초록
This study aims to investigate effects of the length of the buoy and sand bag line on the loss of webfoot octopus pot. A numerical modeling and simulation was carried out to analyze the process that the pot gear affected by wave using the mass spring model. Through the simulation, tensions of sand bag line under various condition were investigated by length of buoy and sand bag line. The drag force and coefficient k of an artificial shell used in the webfoot octopus pot was obtained from an experiment in a circular water channel, and the coefficient k was applied to the simulation. To verify the accuracy of the simulation model, a simple test was conducted into measuring a rope tension of a hanging shell under flow. Then, the test result was compared with the simulation. The lengths of the buoy line in the simulation were 1.12, 1.41, 1.80, 2.23, 2.69, and 3.17 times of water depth. The lengths of sand bag line were 10, 20, 30, and 40 meters, and conditions of water depth were 8, 15, 22 meters. 4 meter height and 8 second period of wave were applied to all simulations. As a results, the tension of the sand bag line was decreased as the buoy and sand bag line were increased. The minimum tension of the sand bag line was appeared in conditions that the length of the buoy line is twice of water depth and the sand bag line length is over 40 meters (except in case of depth 8 meters.).