References
- A. Demirbas, Combustion Characteristics of Different Biomass Fuels, Prog. Energy Combust. Sci., 30 (2004) 219-230. https://doi.org/10.1016/j.pecs.2003.10.004
- L. Baxter, Biomass-Coal Co-Combustion: Opportunity for Affordable Renewable Energy, Fuel, 84 (2005) 1295-1302. https://doi.org/10.1016/j.fuel.2004.09.023
- T. Nussbaumer, Combustion and Co-Combustion of Biomass: Fundamentals, Technologies, and Primary Measures for Emission Reduction, Energy Fuels, 17 (2003) 1510-1521. https://doi.org/10.1021/ef030031q
- G.J. Hesselmann, Optimization of Combustion by Fuel Testing in a NOx Reduction Test Facility, Fuel, 76 (1997) 1269-1275. https://doi.org/10.1016/S0016-2361(97)00033-1
- S. Munir, W. Nimmo, B.M. Gibbs, The Effect of Air Staged, Co-Combustion of Pulverised Coal and Biomass Blends on NOx Emissions and Combustion Efficiency, Fuel, 90 (2011) 126-135. https://doi.org/10.1016/j.fuel.2010.07.052
- D.E. Priyanto, S. Ueno, N. Sato, H. Kasai, T. Tanoue, H. Fukushima, Ash Transformation by Co-Firing of Coal with High Ratios of Woody Biomass and Effect on Slagging Propensity, Fuel, 174 (2016) 172-179. https://doi.org/10.1016/j.fuel.2016.01.072
- J. Chacon, J.M. Sala, J.M. Blanco, Investigation on the Design and Optimization of a Low NOx-CO Emission Burner Both Experimentally and through Computational Fluid Dynamics (CFD) Simulations, Energy Fuels, 21 (2007) 42-58. https://doi.org/10.1021/ef0602473
- Z. Chen, Z. Li, Q. Zhu, J. Jing, Gas/Particle Flow and Combustion Characteristics and NOx Emissions of a New Swirl Coal Burner, Energy, 36 (2011) 709-723. https://doi.org/10.1016/j.energy.2010.12.037
- R. Luo, Y. Zhang, N. Li, Q. Zhou, P. Sun, Experimental Study on Flow and Combustion Characteristic of a Novel Swirling Burner Based on Dual Register Structure for Pulverized Coal Combustion, Exp. Therm. Fluid Sci., 54 (2014) 136-150. https://doi.org/10.1016/j.expthermflusci.2014.01.021
- M. Gu, M. Zhang, W. Fan, L. Wang, F. Tian, The Effect of the Mixing Characters of Primary and Secondary Air on NOx Formation in a Swirling Pulverized Coal Flame, Fuel, 84 (2005) 2093-2101. https://doi.org/10.1016/j.fuel.2005.04.019
- J.O.L. Wendt, Fundamental Coal Combustion Mechanisms and Pollutant Formation in Furnaces, Prog. Energy Combust. Sci., 6 (1980) 210-222.
- S. Fan, Z. Li, X. Yang, G. Liu, Z. Chen, Influence of Outer Secondary-Air Vane Angle on Combustion Characteristics and NOx Emissions of a Down-Fired Pulverized-Coal 300 MWe Utility Boiler, Fuel, 89 (2010) 1525-1533. https://doi.org/10.1016/j.fuel.2009.09.014
- S. Ti, Z. Che, Z. Li, Y. Xie, Y. Shao, Q. Zong, Q. Zhang, H. Zhang, L. Zeng, Q. Zhu, Influence of Different Swirl Vane Angles of Over Fire Air on Flow and Combustion Characteristics and NOx Emissions in a 600 MWe Utility Boiler, Energy, 74 (2014) 775-787. https://doi.org/10.1016/j.energy.2014.07.049
-
S. Balusamy, M.M. Kamal, S.M. Lowe, B. Tian, Y. Gao, S. Hochgreb, Laser Diagnostics of Pulverized Coal Combustion in
$O_2/N_2$ and$O_2/CO_2$ Conditions: Velocity and Scalar Field Measurements, Exp. Fluids, 56 (2015) 108. https://doi.org/10.1007/s00348-015-1965-z - M. Stohr, I. Boxx, C.D. Carter, W. Meier, Experimental Study of Vortex-Flame Interaction in a Gas Turbine Model Combustor, Combust. Flame, 159 (2012) 2636-2649. https://doi.org/10.1016/j.combustflame.2012.03.020
- G. Bulat, W.P. Jones, S. Navarro-Martinez, Large Eddy Simulations of Isothermal Confined Swirling Flow in an Industrial Gas-Turbine, Int. J. Heat Fluid Flow, 51 (2015) 50-64. https://doi.org/10.1016/j.ijheatfluidflow.2014.10.028
- Y. Sung, S. Lee, S. Eom, C. Moon, S. Ahn, G. Choi, D. Kim, Optical Non-Intrusive Measurements of Internal Recirculation Zone of Pulverized Coal Swirling Flames with Secondary Swirl Intensity, Energy, 103 (2016) 61-74. https://doi.org/10.1016/j.energy.2015.12.095
- Y. Sung, G. Choi, Non-Intrusive Optical Diagnostics of Co- and Counter-Swirling Flames in a Dual Swirl Pulverized Coal Combustion Burner, Fuel, 174 (2016) 76-88. https://doi.org/10.1016/j.fuel.2016.01.011
- F. Akamatsu, T. Wakabayashi, S. Tsushima, M. Katsuki, Y. Mizutani, Y. Ikeda, N. Kawahara, T. Nakajima, The Development of a Light-Collecting Probe with High Spatial Resolution Applicable to Randomly Fluctuating Combustion Fields, Meas. Sci. Technol., 10 (1999) 1240-1246. https://doi.org/10.1088/0957-0233/10/12/316
-
J.R. Kim, F. Akamatsu, G.M. Choi, D.J. Kim, Observation of Local Heat Release Rate with Changing Combustor Pressure in the
$CH_4$ /Air Flame (Wrinkled Laminar Regime), Thermochim. Acta, 491 (2009) 109-115. https://doi.org/10.1016/j.tca.2009.03.012 - C. Yin, L. Rosendahl, S.K. Kaer, Towards a Better Understanding of Biomass Suspension Co-Firing Impacts Via Investigating a Coal Flame and a Biomass Flame in a Swirl-Stabilized Burner Flow Reactor Under Same Conditions, Fuel Process. Technol., 98 (2012) 65-73. https://doi.org/10.1016/j.fuproc.2012.01.024
- S. Hwang, R. Kurose, F. Akamatsu, H. Tsuji, H. Makino, M. Katsuki, Application of Optical Diagnostics Techniques to a Laboratory-Scale Turbulent Pulverized Coal Flame, Energy Fuels, 19 (2005) 382-392. https://doi.org/10.1021/ef049867z
- Y. Sung, M. Choi, S. Lee, G. Lee, M. Shin, G. Choi, D. Kim, Generation Mechanism of Tube Vortex in Methane-Assisted Pulverized Coal Swirling Flames, Fuel Process. Technol., (2016) in press.
- D. Kim, S. Choi, Experimental Investigation of Burning Pulverized Coal Particles: Emission Analysis and Observation of Particle Sample, J. Korean Soc. Combust, 15 (2010) 19-26.
- J.W. An, S.Y. Ahn, C.E. Moon, Y.M. Sung, S.I. Seo, T.H. Kim, G.M. Choi, D.J. Kim, A Study on Characteristics of Combustion and Thermo Pyrolysis in Co-firing with Pulverized Coal and Wood Biomass, J. Korean Soc. Combust, 15 (2010) 34-40.
- M.A. Serio, D.G. Hamblen, J.R. Markham, P.R. Solomon, Kinetics of Volatile Product Evolution in Coal Pyrolysis: Experiment and Theory, Energy Fuels, 1 (1987) 138-152. https://doi.org/10.1021/ef00002a002