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THE STRUCTURE OF PRIORS’ SET OF EQUIVALENT
MEASURES

Ju Hong Kim

Abstract. The set of priors in the representation of Choquet expectation is ex-
pressed as the one of equivalent martingale measures under some conditions. We
show that the set of priors, Qc in (1.1) is the same set of Qθ in (1.3).

1. Introduction

Kim [6] showed that the set of priors in the representation of Choquet expecta-
tion is the one of equivalent martingale measures under some conditions, when the
distortion is submodular. That is, if a capacity c is submodular, then we have the
representation ∫

X dc = max
Q∈Qc

EQ[X] for X ∈ L2(FT ),

where Qc := {Q ∈ M1,f : Q[A] ≤ c(A)∀A ∈ FT }. Here M1,f := M1,f (Ω,F) is the
set of all finitely additive normalized set functions Q : F → [0, 1].

By using g-expectation and related topics [4, 5, 7], Kim [6] showed that Qc equals
to Qθ where Qθ is defined as

Qθ :=
{

Qθ : θ ∈ Θg,
dQθ

dP

∣∣∣
Ft

= exp

(∫ t

0
θsdBs − 1

2

∫ t

0
|θs|2ds

)}
(1.1)

where t ∈ [0, T ] and Θg is defined as

Θg = {(θt)t∈[0,T ] : θ is R− valued, progressively measurable &(1.2)

|θt| ≤ νt},
for a continuous function νt.
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In this paper, we show that for every stopping time τ ∈ [0, T ] and every B ∈ Fτ ,

Qθ =
{

Q(·) =
∫ [

Q1(·|Fτ )1B + Q2(·|Fτ )1Bc

]
dQ3

τ

∣∣∣ {Qi}3
i=1 ⊂ Qθ

c

}
(1.3)

where Q3
τ denotes the restriction of Q3 to Fτ (See the paper [2] for details). In fact,

Chen and Epstein [2] prove (1.3) by using what to be proved. This paper provides
the correct proof in detail.

This paper consists of as follows. Introduction is given in section 1. Some defi-
nitions such as conditional expectation, stopping times etc. are stated in section 2.
The main theorem is given in section 3.

2. Some Definitions such as Conditional Expectation, Stopping
Times etc.

Suppose that there is a probability space (Ω,F , P ), and that P and Q are two
probability measures on (Ω,F , P ).

Definition 2.1. Q is called absolutely continuous with respect to P on the σ-field
F , if for all A ∈ F

P (A) = 0 implies Q(A) = 0.

If Q is absolutely continuous with respect to P and vice versa, then it is called that
Q and P are equivalent.

Definition 2.2. A family of σ-fields {Ft | t ∈ [0, T ]} is a filtration if s, t ∈ [0, T ] and
t ≤ s implies Ft ⊂ Fs ⊂ F .

Theorem 2.3 (Radon-Nikodym). Q is absolutely continuous with respect to P on
F if and only if there exists an F-measurable function ϕ ≥ 0 such that∫

fdQ =
∫

fϕdP for all F-measurable function f ≥ 0.

The function ϕ is called the density or Radon-Nikodym derivative of Q with re-
spect to P , denoted by

dQ

dP
:= ϕ.

Definition 2.4. Suppose that X is an integrable random variable on (Ω,F , P ) and
that G is a σ-field in F . The conditional expectation of X given G, is the random
variable E[X|G] which satisfies these two properties

(1) E[X|G] is G- measurable and integrable
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(2) E[X|G] satisfies the functional equation∫

G
E[X|G]dP =

∫

G
XdP, G ∈ G.

Such a random variable E[X|G] exists. Define a measure ν on G by ν(G) =∫
G XdP for X ≥ 0. Since X is integrable, ν is finite and it is absolutely contin-

uous with respect to P . By the Radon-Nikodym theorem there is a function f ,
G-measurable, such that ν(G) =

∫
G fdP . This f has properties (1) and (2). If X is

not nonnegative, E[X+|G] − E[X−|G] has the required properties. Generally there
are many such random variables E[X|G]. Any one of them is called a version of the
conditional expectation.

The value E[X|G]ω at ω is to be interpreted as the expected value of X for some-
one who knows for each G ∈ G whether or not it contains the point ω, which itself
in general remains unknown. Condition (1) ensures that E[X|G] can in principle
be calculated from this partial information alone. From the condition (2), we have∫
G(X − E[X|G])dP = 0. If the observer, in possession of the partial information

contained in G, is offered the opportunity to bet, paying an entry fee of E[X|G] and
being returned the amount X, and if he/she adopts the strategy of betting if G

occurs, this equation says that the game is fair [1].

Lemma 2.1. If X is integrable and the σ-fields G1 and G2 satisfy G1 ⊂ G2, then

E [ E[ X | G2 ] |G1 ] = E[X | G1].

If G1 = {∅, Ω} and G2 = G, then

E [ E[ X|G ] ] = E[X].

Let τ : Ω → [0, T ] ∪ {∞} be a measurable function.

Definition 2.5. A stopping time τ = τ(ω) is a random variable satisfying

{τ ≤ t} ∈ Ft for all t ≥ 0.

A stopping time is a random time that does not require to investigate the future.
In gambling, the gambler can make his/her decision to stop gambling based on all
of the information upto that time, but not on what will happen in the future.

Since {τ > t − 1
n} = {τ ≤ t − 1

n}c ∈ Ft− 1
n
⊂ Ft for all positive integers n, we

have

{τ = t} = {τ ≤ t} ∩
( ∞⋂

n=1

{
τ > t− 1

n

})
∈ Ft.
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The stopping time τ has the property that the decision to stop at time t must be
based on information available at time t. The condition {τ > t} = {τ ≤ t}c ∈
Ft means that one’s intension at time t to postpone this decision until later is
determined by the information Ft accessible over the period [0, t], and one can’t
take into consideration the future.

Definition 2.6. Let τ = τ(ω) be a stopping time. Then the set Fτ is defined as

Fτ = {A ∈ F |A ∩ {ω : τ(ω) ≤ t}} ⊂ Ft for each t ≥ 0.

The proof of the following Corollary 2.7, Proposition 2.8 and Proposition 2.9 are
in the book [3].

Corollary 2.7. If Q is absolutely continuous with respect to P on F , then

Q is equivalent to P if and only if
dQ

dP
> 0 P − a.s.

Proposition 2.8 (Bayes’s formula). Suppose that Q is absolutely continuous with
respect to P on F with density ϕ and that G ⊂ F is another σ-field. Then for any
F-measurable f ≥ 0,

EQ[f |G] =
1

EQ[ϕ|G]
· E[fϕ|G] Q− a.s.

Proposition 2.9. Suppose that Q and P are two probability measures on the mea-
surable space (Ω,F) and that Q is absolutely continuous with respect to P on F with
density ϕ. If G is a σ-field contained in F , then Q is absolutely continuous with
respect to P on G, and the corresponding density is given by

dQ

dP

∣∣∣
G

= E[ϕ|G] P − a.s.

3. The Main Theorem

We specify (1.2) in order to permit the decision-maker to have a nonsingleton set
of priors. For each t ≥ 0, let Θt be the function such as

Θt : Ω → Rd.

We assume that Θt have the following properties.

(1) (Uniform Boundedness) There is a compact subset K in Rd such that

Θt : Ω → K for each t ≥ 0.

(2) (Compact-Convex) Θt is compact and convex.
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(3) (Measurablity) The mapping (t, ω) ∈ [0, s] × Ω 7→ Θt(ω) is B([0, s]) × Fs-
measurable for any 0 < s ≤ T .

(4) (Normalization) 0 ∈ Θt(ω) dt⊗ dP − a.e.

Define Θ, the set of density generators as

Θ = {θt : θt(ω) ∈ Θt(ω) dt⊗ dP − a.e.}.

Θ is called stochastically convex if for any real-valued process (λt) with 0 ≤ λt ≤ 1,

θ, θ′ ∈ Θ implies (λtθt + (1− λt)θt) ∈ Θ.

Lemma 3.1. The set of density generators Θ satisfies the followings.

(1) 0 ∈ Θ and sup{‖θ‖L∞([0,T ]×Ω) : θ ∈ Θ} < ∞.
(2) Θ is stochastically convex and weakly compact in L1([0, T ]× Ω).

For each θ ∈ Θ define zθ
t as

zθ
t = exp

(
−1

2

∫ t

0
|θs|2ds +

∫ t

0
θsdBs

)
, 0 ≤ t ≤ T.

Then (zθ
t )0≤t≤T is a P -martingale since dzθ

t = zθ
t θt · dBt. Also zθ

T is a P -density on
FT since 1 = zθ

0 = E[zθ
T ]. If a probability measure Qθ on (Ω,F) is defined as

Qθ(A) = E[1Azθ
T ], A ∈ FT ,

then Qθ is equivalent to P .
Note that the set of equivalent martingale measures Qθ is defined as

Qθ :=
{

Qθ
∣∣∣ θ ∈ Θ,

dQθ

dP
= zθ

T or
dQθ

dP

∣∣∣
Ft

= zθ
t

}
.

Now we prove the main theorem.

Theorem 3.1. For every deterministic τ ∈ [0, T ] and every B ∈ Fτ , Qθ is repre-
sented by

Qθ =
{

Q
∣∣∣Q(·) :=

∫ [
Q1(·|Fτ )1B + Q2(·|Fτ )1Bc

]
dQ3

τ

∣∣∣ {Qi}3
i=1 ⊂ Qθ

}
(3.1)

where Qi is a short notation for Qθi
and Q3

τ denotes the restriction of Q3 to Fτ .

Proof. It’s easy to show that Qθ is contained in the right hand side of (3.1). Let
Qθ ∈ Qθ. Then we have dQθ

dP

∣∣∣
Ft

= zθ
t and E[zθ

T |Fτ ] = zθ
τ by Proposition 2.9.
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If we take Qi = Qθ for i = 1, 2, 3, then for A ∈ FT∫ [
Q1(A|Fτ )1B + Q2(A|Fτ )1Bc

]
dQ3

τ =
∫ [

Qθ(A|Fτ )1B + Qθ(A|Fτ )1Bc

]
dQθ

τ

=
∫

Qθ(A|Fτ )zτdP =
∫

E[1Azθ
T |Fτ ]

E[zθ
T |Fτ ]

zτdP

= E[E[1Azθ
T |Fτ ]] = E[1Azθ

T ]

= Qθ(A).

Next we show the reverse inclusion. Let Qi ∈ Qθ for i = 1, 2, 3. Define θt as

θt = 1{t≥τ}×Bθ1
t + 1{t≥τ}×Bcθ2

t + 1{t<τ}θ3
t .

Then θt ∈ Θ. Moreover, by a direct calculation we can get

zθ
t = exp

(
−1

2

∫ t

0
|θs|2ds +

∫ t

0
θsdBs

)

=





z3
τz1

t /z1
τ if t ≥ τ and ω ∈ B

z3
τz2

t /z2
τ if t ≥ τ and ω ∈ Bc.

For A ∈ FT define Qθ as

Qθ(A) =
∫ [

Q1(A|Fτ )1B + Q2(A|Fτ )1Bc

]
dQ3

τ .

By the Monotone Convergence Theorem for conditional expectation, Qθ is a prob-
ability measure and becomes

EQθ [Y ] = EQ3
τ

[
EQ1 [Y |Fτ ]1B + EQ2 [Y |Fτ ]1Bc

]
, Y ≥ 0.

We show that Qθ is equivalent to P . Let ϕT be the density process of Q1 with
respect to Q3

τ . Then we have

ϕT =
dQ1

dQ3
τ

=
dQ1/dP

dQ3
τ/dP

=
z1
T

z3
τ

and ϕτ = EQ3
τ
[ϕT |Fτ ] =

z1
τ

z3
τ

by Proposition 2.9. For ω ∈ B and Y ≥ 0, we have

EQθ [Y ] = EQ3
τ

[
EQ1 [Y |Fτ ]

]

= EQ3
τ

[
1
ϕτ

EQ3
τ
[ϕT Y |Fτ ]

]
= EQ3

τ

[
EQ3

τ
[ϕT /ϕτY |Fτ ]

]

= EQ3
τ

[
z1
T

z1
τ

Y

]
= E

[
z3
τz1

T

z1
τ

Y

]

= E[zθ
T Y ].(3.2)
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For ω ∈ Bc, we can similarly show that

EQθ [Y ] = EQ3
τ

[
EQ2 [Y |Fτ ]

]
= E

[
z3
τz2

T

z2
τ

Y

]

= E[zθ
T Y ].(3.3)

By taking Y = 1A ∈ FT in (3.2) and (3.3), we have

Qθ(A) = E[zθ
T 1A].

Therefore, we have shown that dQθ

dP = zθ
T > 0. Thus Qθ is equivalent to P . ¤
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