DOI QR코드

DOI QR Code

Lossless Frame Memory Compression with Low Complexity based on Block-Buffer Structure for Efficient High Resolution Video Processing

고해상도 영상의 효과적인 처리를 위한 블록 버퍼 기반의 저 복잡도 무손실 프레임 메모리 압축 방법

  • Kim, Jongho (Department of Multimedia Engineering, Sunchon National University)
  • 김종호 (순천대학교 멀티미디어공학과)
  • Received : 2016.10.31
  • Accepted : 2016.11.10
  • Published : 2016.11.30

Abstract

This study addresses a low complexity and lossless frame memory compression algorithm based on block-buffer structure for efficient high resolution video processing. Our study utilizes the block-based MHT (modified Hadamard transform) for spatial decorrelation and AGR (adaptive Golomb-Rice) coding as an entropy encoding stage to achieve lossless image compression with low complexity and efficient hardware implementation. The MHT contains only adders and 1-bit shift operators. As a result of AGR not requiring additional memory space and memory access operations, AGR is effective for low complexity development. Comprehensive experiments and computational complexity analysis demonstrate that the proposed algorithm accomplishes superior compression performance relative to existing methods, and can be applied to hardware devices without image quality degradation as well as negligible modification of the existing codec structure. Moreover, the proposed method does not require the memory access operation, and thus it can reduce costs for hardware implementation and can be useful for processing high resolution video over Full HD.

본 논문에서는 고해상도 영상의 효과적인 처리를 위한 블록 버퍼 기반의 저 복잡도 무손실 프레임 메모리 (frame memory) 압축 방법을 제안한다. 제안하는 압축 방법은 공간적 상관도를 제거하기 위하여 블록단위 MHT (modified Hadamard transform)를 사용하고, 엔트로피 부호화를 위하여 AGR (adaptive Golomb-Rice) 부호화 기법을 적용하여 저 복잡도 무손실 압축 및 효과적인 하드웨어 구현을 달성한다. MHT는 가산기와 1비트 오른쪽 시프트(1-bit right shift) 연산만으로 구성되어 있고, AGR은 별도의 메모리 공간 및 메모리 접근 동작(memory access operation)을 포함하지 않아 저 복잡도 구현이 용이하다. 기존의 저 복잡도 무손실 압축 방법과 비교하여 제안한 알고리즘은 압축률 측면에서 우수한 성능을 나타내고, 기존 코덱(codec)의 구조를 크게 수정하지 않으면서 화질의 열화없이 하드웨어 장치에 적용될 수 있음을 다양한 영상에 대한 실험 및 복잡도 분석을 통해 보인다. 또한 제안한 방법은 메모리 접근 동작을 필요로 하지 않아 하드웨어 구현을 위한 비용을 최소화 할 수 있어, Fill HD급 이상의 고해상도 영상을 효과적으로 처리하는데 유용하다.

Keywords

References

  1. H.-C. Kuo and Y.-L. Lin, "A hybrid algorithm for effective lossless compression of video display frames," IEEE Trans. Multimedia, vol. 14, no. 3, pp. 500-509, Jun. 2002. https://doi.org/10.1109/TMM.2012.2191945
  2. J. Kim, "Orientation-based adaptive prediction for effective lossless image compression," J. Korea Inst. Inf. Commun. Eng., vol. 19, no. 10, pp. 2409-2416, Oct. 2015. DOI: https://doi.org/10.6109/jkiice.2015.19.10.2409
  3. H. Schwarz, D. Marpe, and T. Wiegand, "Overview of the scalable video coding extension of the H.264/AVC standard," IEEE Trans. Circuits Syst. Video Technol., vol. 17, no. 9, pp. 1103-1120, Sep. 2007. DOI: https://doi.org/10.1109/TCSVT.2007.905532
  4. M. Tikekar, C.-T. Huang, C. Juvekar, V. Sze, and A. P. Chandrakasan, "A 249-Mpixel/s HEVC video-decoder chip for 4K ultra-HD applications," IEEE J. Solid-State Circuits, vol. 49, no. 1, pp. 61-72, Jan. 2014. DOI: https://doi.org/10.1109/JSSC.2013.2284362
  5. G. J. Sullivan, J. Ohm, W.-J. Han, and T. Wiegand, "Overview of the High Efficiency Video Coding (HEVC) standard," IEEE Trans. Circuits Syst. Video Technol., vol. 22, no. 12, pp. 1649-1668, Dec. 2012. DOI: https://doi.org/10.1109/TCSVT.2012.2221191
  6. J. Lei, X. Zou, Z. Wu, and W. Fan, "Research of an image map encoding algorithm on frame buffer," in Proc. Int. Conf. ASIC, Guilin, China, pp. 894-897, 2007.
  7. T. L. B. Yng, B.-G. Lee, and H. Yoo, "A low complexity and lossless frame memory compression for display devices," IEEE Trans. Consum. Electron., vol. 54, no. 3, pp. 1453-1458, Aug. 2008. DOI: https://doi.org/10.1109/TCE.2008.4637640
  8. S. Dikbas and F. Zhai, "Lossless image compression using adjustable fractional line-buffer," Signal Processing: Image Commun., vol. 25, no. 5, pp. 345-351, Jun. 2010. DOI: https://doi.org/10.1016/j.image.2010.02.004
  9. T. Song and T. Shimamoto, "Reference frame data compression method for H.264/AVC," IEICE Electron. Exp., vol. 4, no. 3, pp. 121-126, Feb. 2007. DOI: https://doi.org/10.1587/elex.4.121
  10. S. H. Lee, M. K. Chung, S. M. Park, and C. M. Kyung, "Lossless frame memory recompression for video codec preserving random accessibility of coding unit," IEEE Trans. Consum. Electron., vol. 55, no. 4, pp. 2105-2113, Nov. 2009. DOI: https://doi.org/10.1109/TCE.2009.5373775
  11. J. Kim and C. M. Kyung, "A lossless embedded compression using significant bit truncation for HD video coding," IEEE Trans. Circuits Syst. Video Technol., vol. 20, no. 7, pp. 848-860, Jun. 2010. https://doi.org/10.1109/TCSVT.2010.2045923
  12. Y. Lee, C.-E. Rhee, and H.-J. Lee, "A new frame recompression algorithm integrated with H.264 video compression," in Proc. IEEE Int. Symposium on Circuits and Systems, pp. 1621-1624, May 2007. DOI: https://doi.org/10.1109/iscas.2007.378829
  13. M. J. Weinberger, G. Seroussi, and G. Sapiro, "The LOCO-I lossless image compression algorithm: Principles and standardization into JPEG-LS," IEEE Trans. Image Processing, vol. 9, no. 8, pp. 1309-1324, Aug. 2000. DOI: https://doi.org/10.1109/83.855427
  14. T. Y. Lee, "A new frame-recompression algorithm and its hardware design for MPEG-2 video decoders," IEEE Trans. Circuits Syst. Video Technol., vol. 13, no. 6, pp. 529-534, Jun. 2003. DOI: https://doi.org/10.1109/TCSVT.2003.813425
  15. H. Yoo, J. M. Jo, and J. C. Jeong, "A hierarchical lossless image compression based on modified Hadamard transform," in Proc. 10th Workshop on Image Processing and Understanding, pp. 516-520, 1998.
  16. N. Merhav, G. Seroussi, and M. J. Weinberger, "Optimal prefix codes for source with two-sided geometric distribution", IEEE Trans. Information Theory, vol. 46, no. 1, pp. 121-135, Jan. 2000. DOI: https://doi.org/10.1109/18.817520
  17. X. Lian, Z. Liu, W. Zhou, and Z. Duan, "Lossless frame memory compression using pixel-grain prediction and dynamic order entropy coding," IEEE Trans. Circuits Syst. Video Technol., vol. 26, no. 1, pp. 223-235, Jan. 2016. DOI: https://doi.org/10.1109/TCSVT.2015.2469572