DOI QR코드

DOI QR Code

MODIS 위성자료를 이용한 Modified Satellite-Based Priestley-Taylor (MS-PT)의 적용 및 실제 증발산 평가

Assessment of actual evapotranspiration using modified satellite-based priestley-taylor algorithm using MODIS products

  • 백종진 (성균관대학교 건설환경시스템공학과) ;
  • 박종민 (메릴랜드주립대학교 건설환경공학과) ;
  • 최민하 (성균관대학교 수자원 전문대학원)
  • Baik, Jongjin (School of Civil, Architectural and Environmental System Engineering, Sungkyunkwan University) ;
  • Park, Jongmin (Department of Civil and Environmental Enginnering, University of Maryland) ;
  • Choi, Minha (Department of Water Resources, Graduate School of Water Resources, Sungkyunkwan University)
  • 투고 : 2016.07.19
  • 심사 : 2016.09.20
  • 발행 : 2016.11.30

초록

증발산은 물수지 및 수문순환의 체계를 파악하기 위한 중요한 인자로서 이에 대한 정확한 이해 및 산정이 필요하다. 국내외에서 증발산에 대한 많은 연구들이 수행되었으나, 지점자료만을 이용하여 산정한 증발산은 시 공간적인 변동성을 파악하는데 제약이 발생한다. 이에 따라, 물리식을 기반으로 하여 인공위성에서 산정된 수문기상인자를 활용하여 증발산량의 시 공간적인 표현에 대한 연구가 발전하게 되었다. 그러나 기존에 활용되고 있는 방법들은 상대적으로 많은 입력 자료가 요구된다. 본 연구에서는 MOderate-Resolution Imaging Spectroradiometer (MODIS) 산출물을 이용하여 순복사에너지를 산정하였으며, 기존에 활용된 인공위성 기반 증발산 알고리즘에 비해 상대적으로 적은 입력 자료를 이용하는 Modified Satellite-Based Priestley-Taylor (MS-PT) 알고리즘을 적용하여 실제증발산을 산정하였다. 또한, MODIS 산출물로부터 계산된 순복사에너지와 실제증발산의 정확성을 확인하기 위하여, 청미천과 설마천의 플럭스 타워에서 관측된 자료와 비교 검증을 실시하였다. 전반적으로 MODIS 자료를 이용하여 산정된 순복사에너지와 실제증발산 값이 두 플럭스 타워에서 관측된 순복사에너지와 실제증발산이 높은 상관성을 나타내는 것을 확인할 수 있었다. 특히. 전체 모의기간 동안 인공위성 자료를 이용하여 산정된 실제증발산의 평균 결정계수는 청미천에서 0.77(0.72-0.81), 설마천에서 0.70(0.67-0.78)로 나타났다. 그러나, 청미천에 비해 설마천에서의 실제증발산 값이 과대산정되는 것을 확인 할 수 있었다. 이러한 이유는 식생에 대한 영향 및 MODIS로부터 산정된 복사에너지에서의 오차로 인해 발생한 것으로 판단된다.

Accurate understanding and estimating Evapotranspiration (ET) is essential for understanding the mechanism of water cycle and water budget. ET has been analyzed by many researchers in worldwide while Ground-based ET has limiation in analyzing the spatio-temporal pattrens of ET. Thus, many researches have been conducted to represent the spatio-temporal variation of ET by using hydrometeorological variables estimated from remote sensing datasets. Previous remote sensing based ET algorithms, however, have disadvantage in that various hydrometeological input datasets were required. In this study, actual ET was estimated by MODIS-based Rn and MS-PT algorithm requiring relatively less input data than previous method. The result confirmed that the observed $R_N$ and latent heat flux from the eddy-covariance based fluxtowers located at CFK and SMK showed high correlation with the estimated $R_N$ and ET. The average determination coefficients ($R^2$) of ET estimated from satellite dataset over study periods were 0.77 (0.72-0.81) in Cheongmi (CFK) and 0.70 (0.67-0.78) in Sulma (SMK), respectively. Comparing with the actual ET of two flux tower sites, however, SMK showed more overestimated patterns than CFK due to the vegetation and radiation related errors.

키워드

참고문헌

  1. Allen, R. G., Tasumi, M., and Trezza, R. (2007). "Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC)-model." J Irrig Drain Eng ASCE, Vol. 133, No. 4, pp. 380-394. https://doi.org/10.1061/(ASCE)0733-9437(2007)133:4(380)
  2. Anderson, M. C., Norman, J. M., Diak, G. R., Kustas, W. P., and Mecikalski, J. R. (1997). "A two-source time-integrated model for estimating surface fluxes using thermal infrared remote sensing." Remote Sensing Environmental, Vol. 60, pp. 195-216. https://doi.org/10.1016/S0034-4257(96)00215-5
  3. Baek, J. J., Byun, K., Kim, D., and Choi, M. (2013a). "Assessment of solar insolation from COMS: Sulma and Cheongmi watersheds." Korean J. Remote Sens. Vol. 29, pp. 137-149. https://doi.org/10.7780/kjrs.2013.29.1.13
  4. Baek, J., Sur, C., and Choi, M. (2013b) "Assessment of outgoing longwave radiation using COMS : Cheongmi and sulma catchments." Journal of Korea Water Resources Association, Vol. 46, No. 5, pp. 465-476. https://doi.org/10.3741/JKWRA.2013.46.5.465
  5. Baik, J., and Choi, M. (2015a). "Evaluation of geostationary satellite (COMS) based Priestley-Taylor evapotranspiration." Agricultural Water Management, Vol. 159, pp. 77-91. https://doi.org/10.1016/j.agwat.2015.05.017
  6. Baik, J., and Choi, M. (2015b) "Evaluation of remotely sensed actual evapotranspiration products from COMS and MODIS at two different flux tower sites in Korea." International Journal of Remote Sensing, Vol. 36, No. 1, pp. 375-402. https://doi.org/10.1080/01431161.2014.998349
  7. Bisht, G., and Bras, R. L. (2010). "Estimation of net radiation from the MODIS data under all sky conditions: Southern great plains case study." Remote Sensing of Environment, Vol. 114, No. 7, pp. 1522-1534. https://doi.org/10.1016/j.rse.2010.02.007
  8. Bisht, G., Venturini, V., Islam, S., and Jiang, L. E. (2005). "Estimation of the net radiation using MODIS (Moderate Resolution Imaging Spectroradiometer) data for clear sky days." Remote Sensing of Environment, Vol. 97, No. 1, pp. 52-67. https://doi.org/10.1016/j.rse.2005.03.014
  9. Byun, K., Shin, J., Lee, Y. K., and Choi, M. (2012). "Validation of net radiation measured from fluxtower based on eddy covariance method: Case study in seolmacheon and cheongmicheon watersheds." Journal of the Korean Water Resources Association, Vol. 46, No. 2, pp. 111-122.
  10. Byun, K., Liaqat, U. W., and Choi, M. (2013) "Dual-model approaches for evapotranspiration analyses over homo- and heterogeneous land surface conditions." Agricultural and Forest Meteorology, Vol. 197, pp. 169-187.
  11. Fisher, J. B., Tu, K. P., and Baldocchi, D. D. (2008). "Global estimates of the land atmosphere water flux based on monthly AVHRR and ISLSCP-II data, validated at 16 FLUXNET sites." Remote Sensing Environmental, Vol. 112, pp. 901-919. https://doi.org/10.1016/j.rse.2007.06.025
  12. Hargreaves, G., Hargreaves, G., and Riley, J. (1985). "Agricultural benefits for senegal river basin." J. Irrig. Drain. Eng. Vol. 111, pp. 113-124. https://doi.org/10.1061/(ASCE)0733-9437(1985)111:2(113)
  13. Hong, J., Kwon, H., Lim, J. H., Byun, Y. H., Lee, J., and Kim, J. (2009). "Standardization of KoFlux eddy-covariance data processing." Korean Journal of Agricultural and Forest Meteorology, Vol. 11, No. 1, pp. 19-26. https://doi.org/10.5532/KJAFM.2009.11.1.019
  14. Hou, J., Jia, G., Zhao, T., Wang, H., and Tang, B. (2014). "Satellite-based estimation of daily average net radiation under clear-sky conditions." Advances in Atmospheric Sciences, Vol. 31, pp. 705-720. https://doi.org/10.1007/s00376-013-3047-6
  15. Hwang, K., Choi, M., Lee, S. O. and Seo, J.-W. (2013). "Estimation of instantaneous and daily net radiation from MODIS data under clear sky conditions: A case study in east Asia." Irrigation Science, Vol. 31, No. 5, pp. 1173-1184. https://doi.org/10.1007/s00271-012-0396-3
  16. Jacobs, J. M., Myers, D. A., Anderson, M. C., and Diak, G. R. (2002). "GOES surface insolationto estimate wetlands evapotranspiration." J. Hydrol, Vol. 266, pp. 53-65. https://doi.org/10.1016/S0022-1694(02)00117-8
  17. Jeong, S. T., Jang, K. C., Kang, S. K., Kim, J., Kondo, H., Gamo, M., Asanuma, J., Saigusa, N., Wang, S., and Han, S. (2009). "Valuation of MODIS-derived evapotranspiration at the flux tower sites in east Asia." Korean Journal of Agricultural and Forest Meteorology, Vol. 11, No. 4, pp. 174-184. https://doi.org/10.5532/KJAFM.2009.11.4.174
  18. Kim, J., and Hogue, T. S. (2008). "Evaluation of a MODIS-based potential evapotranspiration product at the point scale." J. Hydrometeorol, Vol. 9, pp. 444-460. https://doi.org/10.1175/2007JHM902.1
  19. Lee, K. H., and Park, J. H. (2008). "Calibration of the hargreaves equation for the reference evapotranspiration estimation on a nation-wide scale." Journal of the Korean Society of Civil Engineers, Vol. 28, No. 6, pp. 675-681.
  20. Lee, M. J., Han, K. S., and Kim, I. H. (2011). "Estimation of actual evapotranspiration using multi-satellite data over Korea Peninsula." The Korean Society For Geospatial Information System, Vol. 19, No. 4, pp. 145-151.
  21. Lee, Y. G., Jung, C. G., Ahn, S. R., and Kim, S. J. (2016). "Estimation of spatial evapotranspiration using Terra MODIS satellite image and SEBAL model in mixed forest and rice paddy area." Journal of Korea Water Resources Association, Vol. 49, No. 3, pp. 227-239. https://doi.org/10.3741/JKWRA.2016.49.3.227
  22. Monteith, J. L. (1965). "Evaporation and the environment." Symp. Soc. Explor. Biol. Vol. 19, pp. 205-234.
  23. Norman, J. M., Kustas, W. P., and Humes, K. S. (1995). "A two-source approach for estimating soil and vegetation energy fluxes in observations of directional radiometric surface temperature." Agric. For. Meteor, Vol. 77, pp. 263-293. https://doi.org/10.1016/0168-1923(95)02265-Y
  24. Oh, N. S., and Lee, K. H. (2004). "Calculation of evapotranspiration based on daily temperature." Journal of Korea Water Resources Association, Vol. 37, No. 6, pp. 479-485. https://doi.org/10.3741/JKWRA.2004.37.6.479
  25. Park, J., Byun, K., Choi, M., Jang, E., Lee, J., Lee, Y., and Jung S. (2015). "Evaluation of statistical gap fillings for continuous energy flux (evapotranspiration) measurements for two different land cover types." Stochastic Environmental Research and Risk Assessment, Vol. 29, No. 8, pp. 2021-2035. https://doi.org/10.1007/s00477-015-1101-x
  26. Park, J., and Choi, M. (2015). "Estimation of evapotranspiration from ground-based meteorological data and global land data assimilation system (GLDAS)." Stochastic Environmental Research and Risk Assessment, Vol. 29, No. 8, pp. 1963-1992. https://doi.org/10.1007/s00477-014-1004-2
  27. Penman, H. L. (1948). "Natural evaporation from open water, bare soil and grass." Proc.R. Soc. Lond. Ser. A. Math. Phys. Sci. Vol. 193, pp. 120-145. https://doi.org/10.1098/rspa.1948.0037
  28. Rim, C. S. (2008). "Comparison of evapotranspiration estimation approaches considering grass reference crop." Journal of Korea Water Resources Association, Vol. 41, No. 2, pp. 212-228. https://doi.org/10.3741/JKWRA.2008.41.2.212
  29. Rim, C. S., Lim, G. H., and Yoon, S. E. (2011). "A study on the hydroclimatic effects on the estimation of annual actual evapotranspiration using watershed water balance." Journal of Korea Water Resources Association, Vol. 44, No. 12, pp. 915-928. https://doi.org/10.3741/JKWRA.2011.44.12.915
  30. Shin, H. J., Ha, R., Park, M. J., and Kim, S. J. (2010). "Estimation of spatial evapotranspiration using the relationship between MODIS NDVI and Morton ET - For Chungjudam Watershed -." Journal of the Korean Society of Agricultural Engineers, Vol. 52, No. 1, pp. 19-24. https://doi.org/10.5389/KSAE.2010.52.1.019
  31. Shin, S. C. (1996). "Estimation method of evapotranspiration through vegetation monitoring over wide area." Journal of Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography, Vol. 14, No. 1, pp. 81-88.
  32. Sur, C. Y., Lee, J. J., Park, J. Y., and Choi, M. (2012). "Spatial estimation of priestley-taylor based potential evapotranspiration using MODIS imageries: The nak-dong river basin." Korean Journal of Remote Sensing, Vol. 28, No. 5, pp. 521-529. https://doi.org/10.7780/kjrs.2012.28.5.5
  33. Yao, Y., Liang, S., Cheng, J., Liu, S., Fisher, J. B., Zhang, X., Jia, K., Zhao, X., Qin, Q., Zhao, B., Han, S., Zhou, G., Zhou, G., Li, T., and Zhao, S. (2013) "MODIS-driven estimation of terrestrial latent heat flux in China based on a modified Priestley-Taylor algorithm." Agricultural and Forest Meteorology, Vol. 171-172, pp. 187-202, doi: http://dx.doi.org/10.1016/j.agrformet.2012.11.016.
  34. Yao, Y., Liang, S., Zhao, S., Zhang, Y., Qin, Q., Cheng, J., Jia, K., Xie, X., Zhang, N., and Liu, M. (2014), "Validation and application of the modified satellite-based priestley-taylor algorithm for mapping terrestrial evapotranspiration." Remote Sensing. Vol. 6, pp. 880-904. https://doi.org/10.3390/rs6010880