DOI QR코드

DOI QR Code

경사형 및 계단형 보의 유량계수 산정을 위한 실험연구

Experimental study on the discharge coefficient of slope-type and step-type weirs

  • 강준구 (한국건설기술연구원 하천실험센터) ;
  • 김종태 (한국건설기술연구원 하천실험센터)
  • Kang, Joon Gua (River Experiment Center, Korea Institute of Civil Engineering and Building Technology) ;
  • Kim, Jong Tae (River Experiment Center, Korea Institute of Civil Engineering and Building Technology)
  • 투고 : 2016.08.30
  • 심사 : 2016.11.02
  • 발행 : 2016.12.31

초록

최근 들어 보의 환경적인 측면을 고려한 저낙차형 구조물 설치가 요구되면서 고정보의 형태도 다양하게 제안되고 있다. 그러나 실무에 적용하기 위한 횡단구조물의 설계 가이드라인은 매우 한정적이다. 따라서 본 연구는 국내 중소하천에 설치된 고정보의 물리적 제원 변경에 의한 수리적 특성을 분석함으로써 환경적인 측면을 고려한 저낙차형 고정보의 유량계수 산정을 위한 기초자료를 제공하는데 목적이 있다. 이를 위해 경사형 및 계단형 보에 대해 crest 변화에 따른 기본적인 유량계수를 도출하였으며 수위-유량 관계 곡선을 개발하였다. 또한 유량과 crest 등과 같은 수리학적조건을 변화시켜 자유 흐름 조건 및 잠긴 흐름 조건의 흐름특성을 분석하였다.

Due to the recent requirement of installing low-head structures considering environmental aspects, various types of fixed weir have been suggested. However, the design guideline of transverse structures for practical application is very limited. The purpose of the present study is to analyze the hydraulic properties of the fixed weirs installed at the small and middle sized rivers of Korea depending on the physical specifications to provide fundamental data that may be reflected to the design of a low-head fixed weir considering the relevant environmental aspects. The basic discharge coefficient of slope-type and step-type weirs depending on change of crest was estimated, and a stage-discharge curve was developed. In addition, the flow properties under free flow and submerged flow conditions were analyzed by varying the hydraulic conditions such as discharge and crest.

키워드

참고문헌

  1. Borghei, S. M., Jalili, M. R., and Ghodsian, M. (1999). "Discharge coefficient for shape-crested side weir in subcritical flow." Journal of Hydraulic Engineering, ASCE, Vol. 125, No. 10, pp. 1051-1056. https://doi.org/10.1061/(ASCE)0733-9429(1999)125:10(1051)
  2. Borghei, S. M., Vatannia, Z., Ghodsian, M., and Jalili, M. R. (2003). "Oblique rectangular sharp-crested weir." Water and Maritime Engineering, Vol. 156, No. 2, pp. 185-191. https://doi.org/10.1680/wame.2003.156.2.185
  3. Bormann, N. E. and Julien, P. Y. (1991). "Scour downstream of gradecontrol structures." Journal of Hydraulic Engineering, ASCE, Vol. 117, No. 5, pp. 579-594. https://doi.org/10.1061/(ASCE)0733-9429(1991)117:5(579)
  4. Chanson, H. (2001). "Teaching hydraulic design in an Australian undergraduate civil engineering curriculum." Journal of Hydraulic Engineering, ASCE, Vol. 127, No. 12, pp. 1002-1008. https://doi.org/10.1061/(ASCE)0733-9429(2001)127:12(1002)
  5. Falvey, H. T. (2002). Hydraulic design of labyrinth weirs. ASCE, Reston, Virginia, pp. 31-68.
  6. Henderson, F. M. (1966). Open Channel Flow. The Macmillan Company, New York, pp. 48-85.
  7. Hossein, A. and Sara, B. (2010). "Discharge coefficient of sharp-crested weirs using potential flow." Journal of hydraulic Research, Vol. 47, No. 6, pp. 820-823. https://doi.org/10.3826/jhr.2009.3609
  8. Jin, S. W. (2007). Experimental study on discharge coefficient of diagonal weirs. M.S. dissertation, University of Hongik, Korea, pp. 19-60.
  9. Kabiri-Samani, A. R. and Javaheri, A. (2012). "Discharge coefficient for free and submerged flow over piano key weirs." Journal of hydraulic Research, Vol. 50, No. 1, pp. 114-120. https://doi.org/10.1080/00221686.2011.647888
  10. Kang, J. G., Yeo, H. K., Lee, K. C., and Choi, N. J. (2010). "Experimental study on flow characteristic and wave type flow at downstream of stepped weir." Journal of Korea Water Resources Association, Vol. 43, No. 1, pp. 41-49. https://doi.org/10.3741/JKWRA.2010.43.1.41
  11. Kim, H. J., Kim, C. W., and Woo, H. S. (2003). "The effect that stream of river-cross structure for ecological development its alternative." Journal of Korean Society of Civil Engineers, KSCE, Vol. 51, No. 3, pp. 42-58.
  12. Korea Water Resources Association (2005). River design standards and explanation. Journal of Korea Water Resources Association, pp. 411-420.
  13. Novak, P. and Cabelka, J. (1981). Models in hydraulic engineering. Pitman, London, UK, pp. 185-187.
  14. Ohtsu, I., Yasuda, Y., and Gotoh, H. (2001). "Hydraulic condition for undular-jump formations." Journal of Hydraulic Research, Vol. 39, No. 2, pp. 203-209. https://doi.org/10.1080/00221680109499821
  15. Rice, C. E., Kadavy, K. C., and Robinson, K. M. (1998). "Roughness of loose rock riprap on steep slopes." Journal of Hydraulic Engineering, ASCE, Vol. 124, No. 2, pp. 179-185. https://doi.org/10.1061/(ASCE)0733-9429(1998)124:2(179)
  16. Song, J. W., Park, Y. J., and Lee, Y. H. (1994). "Characteristics of channel bend reach and shape of cross-section." Journal of Korean Society of Civil Engineers, KSCE, Vol. 14, No. 5, pp. 1191-1197.
  17. Tullis, B. P., Young, J. C., and Chandler, M. A. (2007). "Head-discharge relationships for submerged labyrinth weirs." Journal of Hydraulic Engineering, Vol. 133, No. 3, pp. 248-254. https://doi.org/10.1061/(ASCE)0733-9429(2007)133:3(248)
  18. Villemonte, J. R. (1947). "Submerged weir discharge studies." Engineering News-Record, Vol. 139, No. 26, pp. 54-57.
  19. We, Y. M. (2005). Aeration & Energy dissipation efficiency by overflow of steped weir. Ph. D. dissertation, University of Chung-Ang, pp. 34-97.
  20. Yeo, H. G., Kang, J. G., Cheong, S. H., and Yoon, B. M. (2005). "Experimental study on establishment of downstream critical depth in round-crested weir." Proceedings Korea Water Resources Association, KWRA, pp. 1113-1117.
  21. Zerihun, Y. T. and Fenton, J. D. (2007). "A Boussinesq-type model for flow over trapezoidal profile weirs." Journal of Hydraulic Research, Vol. 45, No. 4, pp. 519-528. https://doi.org/10.1080/00221686.2007.9521787