DOI QR코드

DOI QR Code

Differential Cytotoxicity of Penta-O-galloyl-β-D-glucose in Human Cancer and Normal Cell Lines of Various Origins

사람의 다양한 조직에서 기원하는 암세포 및 정상세포에 대한 penta-O-galloyl-β-D-glucose의 세포독성 효과

  • Lee, Hyeon-Jeong (Gyeongnam Science High School) ;
  • Kim, Min-Gyeong (Gyeongnam Science High School) ;
  • Lee, Song-Yeong (Gyeongnam Science High School) ;
  • Song, Min-Hyock (Gyeongnam Science High School) ;
  • Kim, Yoon-Dong (Gyeongnam Science High School) ;
  • Ha, Jeong-Sook (Department of Biology Education, College of Education, Gyeongsang National University) ;
  • Jeong, Gie-Joon (Department of Biology Education, College of Education, Gyeongsang National University) ;
  • Rho, Gyu-Jin (OBS/Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University) ;
  • Jeon, Byeong-Gyun (Department of Biology Education, College of Education, Gyeongsang National University)
  • 이현정 (경남과학고등학교) ;
  • 김민경 (경남과학고등학교) ;
  • 이송영 (경남과학고등학교) ;
  • 송민혁 (경남과학고등학교) ;
  • 김윤동 (경남과학고등학교) ;
  • 하정숙 (경상대학교 사범대학 생물교육과) ;
  • 정계준 (경상대학교 사범대학 생물교육과) ;
  • 노규진 (경상대학교 수의과대학 수의학과) ;
  • 전병균 (경상대학교 사범대학 생물교육과)
  • Received : 2016.06.08
  • Accepted : 2016.09.22
  • Published : 2016.11.30

Abstract

The present study examined the cytotoxic effects of 1, 2, 3, 4, 6-penta-O-galloyl-${\beta}$-D-glucose (PGG), known as the pentahydroxy gallic acid ester of glucose, in the various human cancer cell lines (A-549, MDA-MB-231, U87-MG, MCF-7 and PANC-1), normal MRC-5 fetal fibroblasts, and dental papilla tissue- derived mesenchymal stem cells (DPSCs). Significantly (p<0.05) lower half maximal inhibitory concentration ($IC_{50}$) values were observed in the A-549 and MDA-MB-231 cells showing a high proliferation capacity, compared with other cancer and normal cell lines with a relatively low proliferation capacity. The population doubling time (PDT) was significantly (p<0.05) higher in the $10{\mu}M$ PGG-treated cell lines than those of untreated control cell lines. The present study demonstrated that the $IC_{50}$ value increases proportionally to the extending PDT. A high cell number with senescence-associated ${\beta}-galactosidase$ activity was also observed in the $10{\mu}M$ PGG-treated cells compared with those of untreated control cells. Moreover, the level of telomerase activity was significantly (p<0.05) decreased with $10{\mu}M$ PGG treatment, especially in A-549 and MDA-MB-231 cells showing a high proliferation capacity. Based on these observations, PGG could serve as a potent agent for cancer chemotherapy, as its treatment was more effective in cells with a high proliferation capacity.

본 연구는 다당체의 한 종류인 penta-O-galloyl-${\beta}$-D-glucose (PGG)가 사람의 여러 조직에서 기원하는 여러 암세포주(A-549, MDA-MB-231, U87-MG, MCF-7 및 PANC-1), 정상 MRC-5 태아 섬유아세포 그리고 사랑니에서 유래한 간엽줄기세포(DPSCs)에 미치는 세포독성 효과를 조사하였다. $IC_{50}$값은 다른 세포주에 비해 높은 증식률을 나타내는 A-549 및 MDA-MB-231 암세포주에서 유의적으로 낮게 관찰되었다. 10 uM의 PGG가 포함된 배양액에서 세포를 7일 동안 배양한 결과, 세포배가시간은 모든 세포주에서 유의적으로 늘어났고, 세포배가시간과 $IC_{50}$값의 관계를 조사한 결과, 세포배가시간이 늘어남에 따라 $IC_{50}$값은 비례적으로 증가됨을 증명하였다. 또한, 10 uM의 PGG로 처리된 세포주들은 노화와 관련된 ${\beta}-galactosidase$의 활성도가 높게 관찰되었다. 특히, telomerase 활성도는 A-549 및 MDA-MB-231 암세포주에서 다른 세포주에 비하여 현저히 감소하는 것을 관찰하였다. 이러한 결과를 바탕으로 PGG는 높은 증식률을 보이는 암세포주에서 높은 세포독성효과를 나타내어 잠재적인 항암물질임을 증명하였다.

Keywords

References

  1. Abdullah, A. S., Mohammed, A. S., Abdullah, R., Mirghani, M. E. and Al-Qubaisi, M. 2014. Cytotoxic effects of Mangifera indica L. kernel extract on human breast cancer (MCF-7 and MDA-MB-231 cell lines) and bioactive constituents in the crude extract. BMC Complement. Altern. Med. 25, 199.
  2. Allsopp, R. C., Vaziri, H., Patterson, C., Goldstein, S., Younglai, E. V., Futcher, A. B., Greider, C. W. and Harley, C. B. 1992. Telomere length predicts replicative capacity of human fibroblasts. Proc. Natl. Acad. Sci. USA 89, 10114-10118. https://doi.org/10.1073/pnas.89.21.10114
  3. Artandi, S. E. and DePinho, R. A. 2010. Telomeres and telomerase in cancer. Carcinogenesis 31, 9-18. https://doi.org/10.1093/carcin/bgp268
  4. Cao, Y., Himmeldirk, K. B., Qian, Y., Ren, Y., Malki, A. and Chen, X. 2014. Biological and biomedical functions of Penta-O-galloyl-D-glucose and its derivatives. J. Nat. Med. 68, 465-472. https://doi.org/10.1007/s11418-014-0823-2
  5. Chai, Y., Lee, H. J., Shaik, A. A., Nkhata, K., Xing, C., Zhang, J., Jeong, S. J., Kim, S. H. and Lu, J. 2010. Penta-O-galloyl-beta- D-glucose induces G1 arrest and DNA replicative S-phase arrest independently of cyclin-dependent kinase inhibitor 1A, cyclin-dependent kinase inhibitor 1B and P53 in human breast cancer cells and is orally active against triple negative xenograft growth. Breast Cancer Res. 12, R67. https://doi.org/10.1186/bcr2634
  6. Cryan, L. M., Bazinet, L., Habeshian, K. A., Cao, S., Clardy, J., Christensen, K. A. and Rogers, M. S. 2013. 1,2,3,4,6- Penta-O-galloyl-${\beta}$-D-glucopyranose inhibits angiogenesis via inhibition of capillary morphogenesis gene 2. J. Med. Chem. 56, 1940-1945. https://doi.org/10.1021/jm301558t
  7. Dikmen, Z. G., Gellert, G. C., Jackson, S., Gryaznov, S., Tressler, R., Dogan, P., Wright, W. E. and Shay, J. W. 2005. In vivo inhibition of lung cancer by GRN163L: a novel human telomerase inhibitor. Cancer Res. 65, 7866-7873. https://doi.org/10.1158/0008-5472.CAN-05-1215
  8. Dong, Y., Yin, S., Jiang, C., Luo, X., Guo, X., Zhao, C., Fan, L., Meng, Y., Lu, J., Song, X., Zhang, X., Chen, N. and Hu, H. 2014. Involvement of autophagy induction in penta-1,2,3,4,6-O-galloyl-${\beta}$-D-glucose-induced senescence-like growth arrest in human cancer cells. Autophagy 10, 296-310. https://doi.org/10.4161/auto.27210
  9. Falandry, C., Bonnefoy, M., Freyer, G. and Gilson, E. 2014. Biology of cancer and aging: a complex association with cellular senescence. J. Clin. Oncol. 32, 2604-2610. https://doi.org/10.1200/JCO.2014.55.1432
  10. Flavin, R., Peluso, S., Nguyen, P. L. and Loda, M. 2010. Fatty acid synthase as a potential therapeutic target in cancer. Future Oncol. 6, 551-562. https://doi.org/10.2217/fon.10.11
  11. Funayama, R. and Ishikawa, F. 2007. Cellular senescence and chromatin structure. Chromosoma 116, 431-440. https://doi.org/10.1007/s00412-007-0115-7
  12. Ghate, N. B., Chaudhuri, D., Sarkar, R., Sajem, A. L., Panja, S., Rout, J. and Mandal, N. 2013. An antioxidant extract of tropical lichen, Parmotrema reticulatum, induces cell cycle arrest and apoptosis in breast carcinoma cell line MCF-7. PLoS One 8, e82293. https://doi.org/10.1371/journal.pone.0082293
  13. Hartwell, L. H. and Kastan, M. B. 1994. Cell cycle control and cancer. Science 266, 1821-1828. https://doi.org/10.1126/science.7997877
  14. Hu, H., Lee, H. J., Jiang, C., Zhang, J., Wang, L., Zhao, Y., Xiang, Q., Lee, E. O., Kim, S. H. and Lu, J. 2008. Penta- 1,2,3,4,6-O-galloyl-beta-D-glucose induces p53 and inhibits STAT3 in prostate cancer cells in vitro and suppresses prostate xenograft tumor growth in vivo. Mol. Cancer Ther. 7, 2681-2691. https://doi.org/10.1158/1535-7163.MCT-08-0456
  15. Hu, H., Zhang, J., Lee, H. J., Kim, S. H. and Lu, J. 2009. Penta-O-galloyl-beta-D-glucose induces S- and G(1)-cell cycle arrests in prostate cancer cells targeting DNA replication and cyclin D1. Carcinogenesis 30, 818-823. https://doi.org/10.1093/carcin/bgp059
  16. Huh, J. E., Lee, E. O., Kim, M. S., Kang, K. S., Kim, C. H., Cha, B. C., Surh, Y. J. and Kim, S. H. 2005. Penta-O-galloyl- beta-D-glucose suppresses tumor growth via inhibition of angiogenesis and stimulation of apoptosis: roles of cyclooxygenase- 2 and mitogen-activated protein kinase pathways. Carcinogenesis 26, 1436-1445. https://doi.org/10.1093/carcin/bgi097
  17. Jeon, B. G., Jang, S. J., Park, J. S., Subbarao, R. B., Jeong, G. J., Park, B. W. and Rho, G. J. 2015. Differentiation potential of mesenchymal stem cells isolated from human dental tissues into non-mesodermal lineage. Anim. Cells Syst. 19, 321-331. https://doi.org/10.1080/19768354.2015.1087430
  18. Jeon, B. G., Kumar, B. M., Kang, E. J., Maeng, G. H., Lee, Y. M., Hah, Y. S., Ock, S. A., Kwack, D. O., Park, B. W. and Rho, G. J. 2011. Differential cytotoxic effects of sodium meta-arsenite on human cancer cells, dental papilla stem cells and somatic cells correlate with telomeric properties and gene expression. Anticancer Res. 31, 4315-4328.
  19. Jeon, B. G., Kwack, D. O. and Rho, G. J. 2011. Variation of telomerase activity and morphology in porcine mesenchymal stem cells and fibroblasts during prolonged in vitro culture. Anim. Biotechnol. 22, 197-210. https://doi.org/10.1080/10495398.2011.624651
  20. Knobloch, M., Braun, S. M., Zurkirchen, L., von Schoultz, C., Zamboni, N., Araúzo-Bravo, M. J., Kovacs, W. J., Karalay, O., Suter, U., Machado, R. A., Roccio, M., Lutolf, M. P., Semenkovich, C. F. and Jessberger, S. 2013. Metabolic control of adult neural stem cell activity by Fasn-dependent lipogenesis. Nature 493, 226-230.
  21. Kuhajda, F. P., Pizer, E. S., Li, J. N., Mani, N. S., Frehywot, G. L. and Townsend, C. A. 2000. Synthesis and antitumor activity of an inhibitor of fatty acid synthase. Proc. Natl. Acad. Sci. USA 97, 3450-3454. https://doi.org/10.1073/pnas.97.7.3450
  22. Kwon, T. R., Jeong, S. J., Lee, H. J., Lee, H. J., Sohn, E. J., Jung, J. H., Kim, J. H., Jung, D. B., Lu, J. and Kim, S. H. 2012. Reactive oxygen species-mediated activation of JNK and down-regulation of DAXX are critically involved in penta-O-galloyl-beta-d-glucose-induced apoptosis in chronic myeloid leukemia K562 cells. Biochem. Biophys. Res. Commun. 424, 530-537. https://doi.org/10.1016/j.bbrc.2012.06.150
  23. Lee, S. J., Lee, H. M., Ji, S. T., Lee, S. R., Mar, W., Kim, J. H., Jung, D. B., Lu, J. and Kim, S. H. 2012. 1,2,3,4,6-Penta-O-galloyl-beta-D-glucose blocks endothelial cell growth and tube formation through inhibition of VEGF binding to VEGF receptor. Cancer Lett. 208, 89-94.
  24. Limame, R., Wouters, A., Pauwels, B., Fransen, E., Peeters, M., Lardon, F., De Wever, O. and Pauwels, P. 2012. Comparative analysis of dynamic cell viability, migration and invasion assessments by novel real-time technology and classic endpoint assays. PLoS One 7, e46536. https://doi.org/10.1371/journal.pone.0046536
  25. Maida, Y. and Masutomi, K. 2015. Telomerase reverse transcriptase moonlights: Therapeutic targets beyond telomerase. Cancer Sci. 106, 1486-1492. https://doi.org/10.1111/cas.12806
  26. Makarevic, J., Rutz, J., Juengel, E., Kaulfuss, S., Tsaur, I., Nelson, K., Pfitzenmaier, J., Haferkamp, A. and Blaheta, R. A. 2014. Amygdalin influences bladder cancer cell adhesion and invasion in vitro. PLoS One 9, e110244. https://doi.org/10.1371/journal.pone.0110244
  27. Mender, I., Gryaznov, S. and Shay, J. W. 2015. A novel telomerase substrate precursor rapidly induces telomere dysfunction in telomerase positive cancer cells but not telomerase silent normal cells. Oncoscience 22, 693-695.
  28. Moon, J. Y., Kim, S. W., Yun, G. M., Lee, H. S., Kim, Y. D., Jeong, G. J., Ullah, I., Rho, G. J. and Jeon, J. B. 2015. Inhibition of cell growth and down-regulation of telomerase activity by amygdalin in human cancer cell lines. Anim. Cells Syst. 19, 295-304. https://doi.org/10.1080/19768354.2015.1060261
  29. Pan, M. H., Lin, J. H., Lin-Shiau, S. Y. and Lin, J. K. 1999. Induction of apoptosis by penta-O-galloyl-beta-D-glucose through activation of caspase-3 in human leukemia HL-60 cells. Eur. J. Pharmacol. 381, 171-183. https://doi.org/10.1016/S0014-2999(99)00549-X
  30. Pandey, P. R., Liu, W., Xing, F., Fukuda, K. and Watabe, K. 2013. Anti-cancer drugs targeting fatty acid synthase (FAS). Recent Pat. Anticancer Drug Discov. 7, 185-197.
  31. Simons, K. and Ikonen, E. 1997. Functional rafts in cell membranes. Nature 387, 569-572. https://doi.org/10.1038/42408
  32. Swinnen, J. V., Roskams, T., Joniau, S., Van Poppel, H., Oyen, R., Baert. L., Heyns, W. and Verhoeven, G. 2002. Overexpression of fatty acid synthase is an early and common event in the development of prostate cancer. Int. J. Cancer 98, 19-22. https://doi.org/10.1002/ijc.10127
  33. Veigel, D., Wagner, R., Stubiger, G., Wuczkowski, M., Filipits, M., Horvat, R., Benhamu, B., Lopez-Rodriguez, M. L., Leisser, A., Valent, P., Grusch, M., Hegardt, F. G., Garcia, J., Serra, D., Auersperg, N., Colomer, R. and Grunt, T. W. 2015. Fatty acid synthase is a metabolic marker of cell proliferation rather than malignancy in ovarian cancer and its precursor cells. Int. J. Cancer 136, 2078-2090. https://doi.org/10.1002/ijc.29261
  34. Wong, A. S., Che, C. M. and Leung, K. W. 2015. Recent advances in ginseng as cancer therapeutics: a functional and mechanistic overview. Nat. Prod. Rep. 32, 256-272. https://doi.org/10.1039/C4NP00080C
  35. Zhao, W., Wang, Y., Hao, W., Zhao, M. and Peng, S. 2015. In vitro inhibition of fatty acid synthase by 1,2,3,4,6-penta-O-galloyl-${\beta}$-D-glucose plays a vital role in anti-tumour activity. Biochem. Biophys. Res. Commun. 445, 346-351.