DOI QR코드

DOI QR Code

Comparative Evaluation of Colon Cancer Stemness and Chemoresistance in Optimally Constituted HCT-8 cell-based Spheroids

적정 구성 배양 HCT-8 기반 대장암 스페로이드의 암 줄기세포능 및 항암제 내성 평가의 비교 평가 연구

  • Lee, Seung Joon (Laboratory of Mucosal Exposome and Biomodulation, Department of Biomedical Sciences, Pusan National University School of Medicine) ;
  • Kim, Hyoung-Kab (Department of Environmental Engineering, Gyungnam National University of Science and Technology) ;
  • Lee, Hyang Burm (Division of Food Technology, Biotechnology and Agrochemistry, Chonnam National University) ;
  • Moon, Yuseok (Laboratory of Mucosal Exposome and Biomodulation, Department of Biomedical Sciences, Pusan National University School of Medicine)
  • 이승준 (부산대학교 의학전문대학원 의과학과) ;
  • 김형갑 (경남과학기술대학교 환경공학과) ;
  • 이향범 (전남대학교 농식품생명화학부) ;
  • 문유석 (부산대학교 의학전문대학원 의과학과)
  • Received : 2016.06.01
  • Accepted : 2016.10.04
  • Published : 2016.11.30

Abstract

Cancer is a complex disease heterogeneously composed of various types of cells including cancer stem-like cells responsible for relapse and chemoresistance in the tumor microenvironment. The conventional two-dimensional cell culture-based platform has critical limitations for representing the heterogeneity of cancer cells in the three-dimensional tumor niche in vivo. To overcome this insufficiency, three-dimensional cell culture methods in a scaffold-dependent or -free physical environment have been developed. In this study, we improved and simplified the HCT-8 colon cancer cell-based spheroid culture protocol and evaluated the relationship between cancer stemness and responses of chemosensitivity to 5- Fluorouracil (5-FU), a representative anticancer agent against colon cancer. Supplementation with defined growth factors in the medium and the culture dish of the regular surface with low attachment were required for the formation of constant-sized spheroids containing $CD44^+$ and $CD133^+$ colon cancer stem cells. The chemo-sensitivities of $CD44^+$ cancer stem cells in the spheroids were much lower than those of $CD44^-$ non-stem-like cancer cells, indicating that the chemoresistance to 5-FU is due to the stemness of colon cancer cells. Taken together, the inflammation and oncogenic gut environment-sensitive HCT-8 cell-based colon cancer spheroid culture and comparative evaluation using the simplified model would be an efficient and applicable way to estimate colon cancer stemness and pharmaceutical response to anticancer drugs in the realistic tumor niche.

암은 비균질적으로 구성된 세포집합체로 간질세포 및 세포 외 기질로 구성된 미세환경과 상호작용에 의해 발병, 전이, 심화되는 복잡한 질병이다. 하지만, 기존의 2차원 배양 세포 기반 플랫폼이 3차원적 생체 환경과 암의 비균질성을 대표하기 힘든 한계를 극복하기 위해 스페로이드 배양 세포를 비롯한 다양한 플랫폼 개발이 활발해지고 있다. 본 연구에서는 특히 감염, 염증 및 식이적 환경성 영향력에 민감한 HCT-8 대장암 세포주를 기반으로 하여 3차원 스페로이드 배양법을 보다 효과적인 방법으로 개선하고, 대장암 스페로이드 세포를 기반으로 암의 비균질적인 특질과 항암내성 연구의 간단하고 개선된 플랫폼을 제시고자 하였다. 3차원 배양법 최적화를 위해 물리적 배양환경 조성과 배양배지 구성에 따른 스페로이드 형태형성을 비교 분석하고 암 줄기세포군의 증가 양상을 확인한 결과, 필수요소로 구성된 제한 배지와 균일한 형태의 비부착성 표면 배양접시에서 배양된 스페로이드가 균일한 형태의 구형을 형성하고 암 줄기세포군이 증가함을 확인하였다. 대장암 스페로이드 세포를 기반으로 대장암 치료제인 5-Fluorouracil (5-FU)에 대한 화학적 감응성 변화를 측정한 결과, 암 줄기세포가 5-FU에 대한 화학적 감수성 저해의 원인이 되며, 최적배양 조건에서 암 줄기세포의 약제 내성의 표현이 증대되었다. 이는 암줄기세포의 항암제 내성에 대한 잠재적 위험성을 내포하는 것으로, 이 방법론은 감염, 염증 및 식이적 요인과 연관된 대장암 스페로이드 세포 기반 항암제 약물반응을 검증하기 위해 효과적이면서 간소한 시험법으로 활용될 수 있을 것이다.

Keywords

References

  1. Abdullah, L. N. and Chow, E. K. 2013. Mechanisms of chemoresistance in cancer stem cells. Clin. Transl. Med. 2, 3. https://doi.org/10.1186/2001-1326-2-3
  2. Allinen, M., Beroukhim, R., Cai, L., Brennan, C., Lahti- Domenici, J., Huang, H., Porter, D., Hu, M., Chin, L., Richardson, A., Schnitt, S., Sellers, W. R. and Polyak, K. 2004. Molecular characterization of the tumor microenvironment in breast cancer. Cancer Cell 6, 17-32. https://doi.org/10.1016/j.ccr.2004.06.010
  3. Birgersdotter, A., Sandberg, R. and Ernberg, I. 2005. Gene expression perturbation in vitro--a growing case for three-dimensional (3D) culture systems. Semin. Cancer Biol. 15, 405-412. https://doi.org/10.1016/j.semcancer.2005.06.009
  4. Breslin, S. and O'Driscoll, L. 2013. Three-dimensional cell culture: the missing link in drug discovery. Drug Discov. Today 18, 240-249. https://doi.org/10.1016/j.drudis.2012.10.003
  5. Cho, R. W. and Clarke, M. F. 2008. Recent advances in cancer stem cells. Curr. Opin. Genet. Dev. 18, 48-53. https://doi.org/10.1016/j.gde.2008.01.017
  6. Choi, H. J., Kim, J., Do, K. H., Park, S. H. and Moon, Y. 2013. Prolonged NF-kappaB activation by a macrophage inhibitory cytokine 1-linked signal in enteropathogenic Escherichia coli-infected epithelial cells. Infect. Immun. 81, 1860-1869. https://doi.org/10.1128/IAI.00162-13
  7. Du, L., Wang, H., He, L., Zhang, J., Ni, B., Wang, X., Jin, H., Cahuzac, N., Mehrpour, M., Lu, Y. and Chen, Q. 2008. CD44 is of functional importance for colorectal cancer stem cells. Clin. Cancer Res. 14, 6751-6760. https://doi.org/10.1158/1078-0432.CCR-08-1034
  8. Edmondson, R., Broglie, J. J., Adcock, A. F. and Yang, L. 2014. Three-dimensional cell culture systems and their applications in drug discovery and cell-based biosensors. Assay Drug Dev. Technol. 12, 207-218. https://doi.org/10.1089/adt.2014.573
  9. Fluckiger, A., Dumont, A., Derangere, V., Rebe, C., de Rosny, C., Causse, S., Thomas, C., Apetoh, L., Hichami, A., Ghiringhelli, F. and Rialland, M. 2016. Inhibition of colon cancer growth by docosahexaenoic acid involves autocrine production of TNFalpha. Oncogene 35, 4611-4622. https://doi.org/10.1038/onc.2015.523
  10. Howard, A., Tahir, I., Javed, S., Waring, S. M., Ford, D. and Hirst, B. H. 2010. Glycine transporter GLYT1 is essential for glycine-mediated protection of human intestinal epithelial cells against oxidative damage. J. Physiol. 588, 995-1009. https://doi.org/10.1113/jphysiol.2009.186262
  11. Huang, E. H., Hynes, M. J., Zhang, T., Ginestier, C., Dontu, G., Appelman, H., Fields, J. Z., Wicha, M. S. and Boman, B. M. 2009. Aldehyde dehydrogenase 1 is a marker for normal and malignant human colonic stem cells (SC) and tracks SC overpopulation during colon tumorigenesis. Cancer Res. 69, 3382-3389. https://doi.org/10.1158/0008-5472.CAN-08-4418
  12. Jin, K., Gao, W., Lu, Y., Lan, H., Teng, L. and Cao, F. 2012. Mechanisms regulating colorectal cancer cell metastasis into liver (Review). Oncol. Lett. 3, 11-15. https://doi.org/10.3892/ol.2011.432
  13. Keysar, S. B. and Jimeno, A. 2010. More than markers: biological significance of cancer stem cell-defining molecules. Mol. Cancer Ther. 9, 2450-2457. https://doi.org/10.1158/1535-7163.MCT-10-0530
  14. Kim, J. B. 2005. Three-dimensional tissue culture models in cancer biology. Semin. Cancer Biol. 15, 365-377. https://doi.org/10.1016/j.semcancer.2005.05.002
  15. Kozovska, Z., Gabrisova, V. and Kucerova, L. 2014. Colon cancer: cancer stem cells markers, drug resistance and treatment. Biomed. Pharmacother. 68, 911-916. https://doi.org/10.1016/j.biopha.2014.10.019
  16. Manfredi, S., Lepage, C., Hatem, C., Coatmeur, O., Faivre, J. and Bouvier, A. M. 2006. Epidemiology and management of liver metastases from colorectal cancer. Ann. Surg. 244, 254-259. https://doi.org/10.1097/01.sla.0000217629.94941.cf
  17. O'Brien, C. A., Pollett, A., Gallinger, S. and Dick, J. E. 2007. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 445, 106-110. https://doi.org/10.1038/nature05372
  18. Ong, C. W., Kim, L. G., Kong, H. H., Low, L. Y., Iacopetta, B., Soong, R. and Salto-Tellez, M. 2010. CD133 expression predicts for non-response to chemotherapy in colorectal cancer. Mod. Pathol. 23, 450-457. https://doi.org/10.1038/modpathol.2009.181
  19. Reya, T., Morrison, S. J., Clarke, M. F. and Weissman, I. L. 2001. Stem cells, cancer, and cancer stem cells. Nature 414, 105-111. https://doi.org/10.1038/35102167
  20. Ricci-Vitiani, L., Lombardi, D. G., Pilozzi, E., Biffoni, M., Todaro, M., Peschle, C. and De Maria, R. 2007. Identification and expansion of human colon-cancer-initiating cells. Nature 445, 111-115. https://doi.org/10.1038/nature05384
  21. Shackleton, M. 2010. Normal stem cells and cancer stem cells: similar and different. Semin. Cancer Biol. 20, 85-92. https://doi.org/10.1016/j.semcancer.2010.04.002
  22. Weiswald, L. B., Bellet, D. and Dangles-Marie, V. 2015. Spherical cancer models in tumor biology. Neoplasia 17, 1-15. https://doi.org/10.1016/j.neo.2014.12.004
  23. Yang, Z., Wang, Z., Fan, Y. and Zheng, Q. 2012. Expression of CD133 in SW620 colorectal cancer cells is modulated by the microenvironment. Oncol. Lett. 4, 75-79. https://doi.org/10.3892/ol.2012.694