References
- Abdullah, L. N. and Chow, E. K. 2013. Mechanisms of chemoresistance in cancer stem cells. Clin. Transl. Med. 2, 3. https://doi.org/10.1186/2001-1326-2-3
- Allinen, M., Beroukhim, R., Cai, L., Brennan, C., Lahti- Domenici, J., Huang, H., Porter, D., Hu, M., Chin, L., Richardson, A., Schnitt, S., Sellers, W. R. and Polyak, K. 2004. Molecular characterization of the tumor microenvironment in breast cancer. Cancer Cell 6, 17-32. https://doi.org/10.1016/j.ccr.2004.06.010
- Birgersdotter, A., Sandberg, R. and Ernberg, I. 2005. Gene expression perturbation in vitro--a growing case for three-dimensional (3D) culture systems. Semin. Cancer Biol. 15, 405-412. https://doi.org/10.1016/j.semcancer.2005.06.009
- Breslin, S. and O'Driscoll, L. 2013. Three-dimensional cell culture: the missing link in drug discovery. Drug Discov. Today 18, 240-249. https://doi.org/10.1016/j.drudis.2012.10.003
- Cho, R. W. and Clarke, M. F. 2008. Recent advances in cancer stem cells. Curr. Opin. Genet. Dev. 18, 48-53. https://doi.org/10.1016/j.gde.2008.01.017
- Choi, H. J., Kim, J., Do, K. H., Park, S. H. and Moon, Y. 2013. Prolonged NF-kappaB activation by a macrophage inhibitory cytokine 1-linked signal in enteropathogenic Escherichia coli-infected epithelial cells. Infect. Immun. 81, 1860-1869. https://doi.org/10.1128/IAI.00162-13
- Du, L., Wang, H., He, L., Zhang, J., Ni, B., Wang, X., Jin, H., Cahuzac, N., Mehrpour, M., Lu, Y. and Chen, Q. 2008. CD44 is of functional importance for colorectal cancer stem cells. Clin. Cancer Res. 14, 6751-6760. https://doi.org/10.1158/1078-0432.CCR-08-1034
- Edmondson, R., Broglie, J. J., Adcock, A. F. and Yang, L. 2014. Three-dimensional cell culture systems and their applications in drug discovery and cell-based biosensors. Assay Drug Dev. Technol. 12, 207-218. https://doi.org/10.1089/adt.2014.573
- Fluckiger, A., Dumont, A., Derangere, V., Rebe, C., de Rosny, C., Causse, S., Thomas, C., Apetoh, L., Hichami, A., Ghiringhelli, F. and Rialland, M. 2016. Inhibition of colon cancer growth by docosahexaenoic acid involves autocrine production of TNFalpha. Oncogene 35, 4611-4622. https://doi.org/10.1038/onc.2015.523
- Howard, A., Tahir, I., Javed, S., Waring, S. M., Ford, D. and Hirst, B. H. 2010. Glycine transporter GLYT1 is essential for glycine-mediated protection of human intestinal epithelial cells against oxidative damage. J. Physiol. 588, 995-1009. https://doi.org/10.1113/jphysiol.2009.186262
- Huang, E. H., Hynes, M. J., Zhang, T., Ginestier, C., Dontu, G., Appelman, H., Fields, J. Z., Wicha, M. S. and Boman, B. M. 2009. Aldehyde dehydrogenase 1 is a marker for normal and malignant human colonic stem cells (SC) and tracks SC overpopulation during colon tumorigenesis. Cancer Res. 69, 3382-3389. https://doi.org/10.1158/0008-5472.CAN-08-4418
- Jin, K., Gao, W., Lu, Y., Lan, H., Teng, L. and Cao, F. 2012. Mechanisms regulating colorectal cancer cell metastasis into liver (Review). Oncol. Lett. 3, 11-15. https://doi.org/10.3892/ol.2011.432
- Keysar, S. B. and Jimeno, A. 2010. More than markers: biological significance of cancer stem cell-defining molecules. Mol. Cancer Ther. 9, 2450-2457. https://doi.org/10.1158/1535-7163.MCT-10-0530
- Kim, J. B. 2005. Three-dimensional tissue culture models in cancer biology. Semin. Cancer Biol. 15, 365-377. https://doi.org/10.1016/j.semcancer.2005.05.002
- Kozovska, Z., Gabrisova, V. and Kucerova, L. 2014. Colon cancer: cancer stem cells markers, drug resistance and treatment. Biomed. Pharmacother. 68, 911-916. https://doi.org/10.1016/j.biopha.2014.10.019
- Manfredi, S., Lepage, C., Hatem, C., Coatmeur, O., Faivre, J. and Bouvier, A. M. 2006. Epidemiology and management of liver metastases from colorectal cancer. Ann. Surg. 244, 254-259. https://doi.org/10.1097/01.sla.0000217629.94941.cf
- O'Brien, C. A., Pollett, A., Gallinger, S. and Dick, J. E. 2007. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 445, 106-110. https://doi.org/10.1038/nature05372
- Ong, C. W., Kim, L. G., Kong, H. H., Low, L. Y., Iacopetta, B., Soong, R. and Salto-Tellez, M. 2010. CD133 expression predicts for non-response to chemotherapy in colorectal cancer. Mod. Pathol. 23, 450-457. https://doi.org/10.1038/modpathol.2009.181
- Reya, T., Morrison, S. J., Clarke, M. F. and Weissman, I. L. 2001. Stem cells, cancer, and cancer stem cells. Nature 414, 105-111. https://doi.org/10.1038/35102167
- Ricci-Vitiani, L., Lombardi, D. G., Pilozzi, E., Biffoni, M., Todaro, M., Peschle, C. and De Maria, R. 2007. Identification and expansion of human colon-cancer-initiating cells. Nature 445, 111-115. https://doi.org/10.1038/nature05384
- Shackleton, M. 2010. Normal stem cells and cancer stem cells: similar and different. Semin. Cancer Biol. 20, 85-92. https://doi.org/10.1016/j.semcancer.2010.04.002
- Weiswald, L. B., Bellet, D. and Dangles-Marie, V. 2015. Spherical cancer models in tumor biology. Neoplasia 17, 1-15. https://doi.org/10.1016/j.neo.2014.12.004
- Yang, Z., Wang, Z., Fan, Y. and Zheng, Q. 2012. Expression of CD133 in SW620 colorectal cancer cells is modulated by the microenvironment. Oncol. Lett. 4, 75-79. https://doi.org/10.3892/ol.2012.694