DOI QR코드

DOI QR Code

Genetic Diversity and Relationship of the Walleye Pollock, Theragra chalcogramma Based on Microsatellite Analysis

Microsatellite marker 분석을 이용한 명태(Theragra chalcogramma) 5 집단의 유전적 다양성 및 유연관계 분석

  • Dong, Chun Mae (Biotechnology research division, National Institute of Fisheries Science (NIFS)) ;
  • Kang, Jung-Ha (Biotechnology research division, National Institute of Fisheries Science (NIFS)) ;
  • Byun, Soon-Gyu (Aquaculture Industry Division, East Sea Fisheries Research Institute NIFS) ;
  • Park, Kie-Young (Department of Marine Biology, Gangneung-Wonju National University) ;
  • Park, Jung Youn (Biotechnology research division, National Institute of Fisheries Science (NIFS)) ;
  • Kong, Hee Jeong (Biotechnology research division, National Institute of Fisheries Science (NIFS)) ;
  • An, Cheul Min (Biotechnology research division, National Institute of Fisheries Science (NIFS)) ;
  • Kim, Gun-Do (Department of Microbiology, College of Natural Sciences, Pukyong National University) ;
  • Kim, Eun-Mi (Biotechnology research division, National Institute of Fisheries Science (NIFS))
  • 동춘매 (국립수산과학원 생명공학과) ;
  • 강정하 (국립수산과학원 생명공학과) ;
  • 변순규 (국립수산과학원 동해수산연구소 양식산업과) ;
  • 박기영 (강릉원주대학교 해양자원육성학과) ;
  • 박중연 (국립수산과학원 생명공학과) ;
  • 공희정 (국립수산과학원 생명공학과) ;
  • 안철민 (국립수산과학원 생명공학과) ;
  • 김군도 (부경대학교 미생물학과) ;
  • 김은미 (국립수산과학원 생명공학과)
  • Received : 2016.09.29
  • Accepted : 2016.10.22
  • Published : 2016.11.30

Abstract

A comprehensive analysis of the genetic diversity and relationship of the cold-water fishery walleye pollock (Theragra chalcogramma), the most abundant economically important fishery resource in the East sea of Korea, has not been carried out, despite its importance in Korea. The present study assessed the genetic diversity and relationship between five walleye pollock populations (Korean population, Russian population, USA population, and Japanese populations) of T. chalcogramma using eight microsatellite DNA (msDNA) markers to provide the scientific data for the preservation and management of the Pollock fishery resource. The results of the analysis of 186 individuals of the Pollock revealed a range of 7.13-10.63 numbers of alleles (mean number of alleles=9.05). The means of observed heterozygosity ($H_O$), expected heterozygosity ($H_E$) were 0.732 and 0.698, respectively. The results of genetic distance, Pairwise $F_{ST}$, UPGMA (UPGMA: un-weighted pair-group method with an arithmetical average) (the phylogenetic tree), PCA (PCA: Principal Coordinate analysis) analysis pointed to significant differences between the Korean population, Russian population, USA population, and Japanese populations, although small (p<0.05). These results shed light on the genetic diversity and relationships of T. chalcogramma and can be utilized for research on the evaluation and conservation of Korean T. chalcogramma as genetic resources.

한류성 어종인 명태는 우리나라 동해를 비롯한 일본, 러시아 북부의 오호츠크해, 베링해, 알래스카 등지에 서식하는 중요한 수산자원으로, 우리나라에서는 그 어획량이 매년 감소하고 있어, 그 자원량의 회복과 보존 및 관리가 필요한 대표적 어종이다. 그러나, 이러한 중요성에도 불구하고 국내에서 명태의 유전학적 집단 분석에 관한 연구는 많이 수행되지 않은 실정이다. 본 연구에서는 우리나라 동해, 러시아, 미국 명태 집단 및 일본 명태 집단과의 유전적 다양성과 유연관계를 분석하여 명태자원의 보존과 관리를 위한 과학적 자료를 제공하기 위해 유전적 다양성 및 계군 분석에 널리 사용되고 있는 microsatellite marker (msDNA) 8개를 사용하여 명태 집단의 유전자형을 분석하였다. 우리나라 동해, 러시아, 미국 및 일본 집단에서 채집된 총 186개체를 분석한 결과, 대립유전자수는 최소 7.13개에서 최대 10.63개로 나타났고, 평균 대립유전자의 수는 9.05개로 나타났다. 기대치와 관찰치 이형 접합율은 각각 0.698과 0.732로 조사되어, 현재 확보된 명태 집단의 유전적 다양성은 비교적 잘 유지되고 있는 것으로 나타났다. 유전학적 유연관계 분석을 위한 유전적 거리, Pairwise FST값, UPGMA와 주성분분석, AMOVA test 분석 결과, 우리나라 동해, 러시아, 미국의 명태 집단 간 유전적 차이는 거의 없었으나 일본 명태 집단과는 낮은 수치이지만 유의한 유전적 차이가 있음을 확인하였다(p<0.05). 본 연구에서 확인된 유전학적 분석을 통한 명태집단의 유전적 특성 및 주변국 집단과의 유연관계 분석결과는 우리나라 동해의 중요한 수산유전자원으로서의 명태에 대한 중요한 과학적인 근거자료가 될 것이며, 앞으로 명태 자원의 보존, 평가 및 이용에 활용 가능한 정보를 제공할 것이다.

Keywords

References

  1. Bark, B. H., Hue, J. B. and Kim, H. K. 1978. Age and growth of Alaska pollack, Theragra Chalcogramma, in the Eastern Sea of Korea. Bulletin of National Fisheries Research and Development Institute. 20, 33-42.
  2. Bark, B. H., Hue, J. B. and Kim, H. K. 1978. Spawning and Maturity of Alaska Pollack, Theragra chalcogramma (PALLAS), in the Eastern Sea of Korea. Bulletin of National Fisheries Research and Development Institute. 22, 33-38.
  3. Beacham, T. D., Lapointe, M., Candy, J. R., Miller, K. M. and Withler, R. E. 2004. DNA in action: rapid application of DNA variation to sockeye salmon fisheries management. Conserv. Gen. 5, 411-416. https://doi.org/10.1023/B:COGE.0000031140.41379.73
  4. Boudry, P., Collet, B., Cornette, F., Hervouet, V. and Bonhomme, F. 2002. High variance in reproductive success of the Pacific oyster (Crassostrea gigas, Thunberg) revealed by microsatellite-based parentage analysis of multifactorial crosses. Aquaculture 204, 283-296. https://doi.org/10.1016/S0044-8486(01)00841-9
  5. Canino, M. F., O'Reilly, P. T., Hauser, L. and Paul, B. 2005. Genetic differentiation in walleye pollock (Theragra chalcogramma) in response to selection at the pantophysin (Panl) locus. Can. J. Fish. Aquat. Sci. 62, 2519-2529. https://doi.org/10.1139/f05-155
  6. Canino, M. F., Spies, I. S. and Hauser, L. 2005. Development and characterization of novel di- and tetranucleotide microsatellites markers in Pacific cod (Gadus macrocephalus). Mol. Ecol. Notes 5, 908-910. https://doi.org/10.1111/j.1471-8286.2005.01109.x
  7. DeWoody, J. A. and Avise, J. C. 2000. Microsatellite variation in marine, freshwater and anadromous fishes compared with other animals. J. Fish. Biol. 56, 461-473. https://doi.org/10.1111/j.1095-8649.2000.tb00748.x
  8. Evans, B., Bartlett, J., Sweijd, N., Cook, P. and Elliott, N. G. 2004. Loss of genetic variation at microsatellite loci in hatchery produced abalone in Australia (Haliotis rubra) and South Africa (Haliotis midae). Aquaculture 233, 109-127. https://doi.org/10.1016/j.aquaculture.2003.09.037
  9. Excoffier, L., Laval, G. and Schneider, S. 2005. Arlequin ver.3. 0: an integrated software package for population genetics data analysis. Evol. Bioinform. 1, 47-50.
  10. FishBase. 2015. Database for walleye Pollock. Retrieved from http;//www.FishBase.org/Summary/speciesSummary.php?ID=318&AT=walleye+Pollock.
  11. Goudet, J. 1995. FSTAT (version 1.2): a computer program to calculate F-statistics. J. Hered. 86, 485-486. https://doi.org/10.1093/oxfordjournals.jhered.a111627
  12. Grant, W. S., Spies, I. B. and Canino, M. F. 2006. Biogeographic evidence for selection on mitochondrial DNA in North Pacific walleye pollock Theragra chalcogramma. J. Hered. 97, 571-580. https://doi.org/10.1093/jhered/esl033
  13. Jarne, P. and Lagoda, P. J. G. 1996. Microsatellites, from molecules to populations and back. Trends Ecol. Evol. 11, 424-429. https://doi.org/10.1016/0169-5347(96)10049-5
  14. Kang, S. K., Park, J. H. and Kim, S. A. 2013. Size-class Estimation of Number of Walleye Pollock Theragra chalcogrammal Caught in the Southwestern East Sea during the 1970s-1990s. Kor. J. Fish. Aquat. Sci. 46, 445-453.
  15. Kim, E. M., Kang, H. S., Kang, J. H., Kim, D. G., An, C. M., Lee, H. W. and Park, J. Y. 2015. Genetic relationship of the randfish, Arctoscopus japonicas inhabit in five different areas of Korea and Japan based on mitochondrial DNA and microsatellite analyses. J. Life Sci. 25, 1204-1213. https://doi.org/10.5352/JLS.2015.25.11.1204
  16. Kim, M. J., An, H. S. and Choi, K. H. 2010. Genetic characteristics of Pacific cod populations in Korea based on microsatellite markers. Fish. Sci. 76, 595-603. https://doi.org/10.1007/s12562-010-0249-z
  17. Kim, S. and Kang, S. 1998. The status and research direction for fishery resources in the East Sea/Sea of Japan. J. Kor. Soc. Fish. Res. 1, 44-58.
  18. Kim, S., Zhang, C. I., Kim, J. Y., Oh, J. H., Kang, S. and Lee, J. B. 2007. Climate variability and its effects on major fisheries in Korea. Ocean. Sci. J. 42, 179-192. https://doi.org/10.1007/BF03020922
  19. Koljonen, M. L., Tahtinen, J., Saisa, M. and Koskiniemi, J. 2002. Maintenance of genetic diversity of Atlantic salmon (Salmo salar) by captive breeding programmes and the geographic distribution of microsatellite variation. Aquaculture 212, 6992.
  20. Langella, O. 2002. POPULATIONS 1.2.29. Population genetic software (individuals or populations distances, phylogenetic trees), http://bioinformatics.org/-tryphon/populations.
  21. Li, Q., Park, C., Endo, T. and Kijima, A. 2004. Loss of genetic variation at microsatellite loci in hatchery strains of the Pacific abalone (Haliotis discus hannai). Aquaculture 235, 207-222. https://doi.org/10.1016/j.aquaculture.2003.12.018
  22. Li, Q., Yu, H. and Yu, R. 2006. Genetic variability assessed by microsatellites in cultured populations of the Pacific oyster (Crassostrea gigas) in China. Aquaculture 259, 95-102. https://doi.org/10.1016/j.aquaculture.2006.05.030
  23. Liu, Z. 2011. Genomic variations and marker technologies for genome-based selection. In: Liu, Z. (ed.), Next Generation Sequencing and Whole Genome Selection in Aquaculture. WileyBlackwell, Oxford, U. K.
  24. Liu, Z. J. and Cordes, J. F. 2004. DNA marker technologies and their applications in aquaculture genetics. Aquaculture 238, 1-37. https://doi.org/10.1016/j.aquaculture.2004.05.027
  25. Nei, M. 1972. Genetic distance between populations. Am. Nat. 106, 283-292. https://doi.org/10.1086/282771
  26. NFRDI. 2010. Ecology and fishing ground of fisheries resources in Korean waters. National Fisheries Research and Development Institute, Busan, Korea. 405.
  27. NFRDI. 2010. Korean Coastal and Offshore Fishery Census. 283-286.
  28. Oh, T. G., Sakuramoto, K. and Lee, S. G. 2004. The Relationship between spawning area water temperature and catch fluctuation of walleye Pollock in the East Sea/Sea of Japan. J. Kor. Soc. Fish. Res. 6, 1-13.
  29. Olsen, J. B., Merkouris, S. E. and Seeb, J. E. 2002. An examination of spatial and temporal genetic variation in walleye pollock (Theragra chalcogramma) using allozyme, mitochondrial DNA, and microsatellite data. Fish. Bull. 100, 752-764.
  30. O'reilly, P. T., Canino, M. F., Bailey, K. M. and Bentzen, P. 2000. Isolation of twenty low stutter di- and tetranucleotide microsatellites for population analyses of walleye Pollock and other gadoids. J. Fish Biol. 56, 1074-1086. https://doi.org/10.1111/j.1095-8649.2000.tb02124.x
  31. O'Reilly, P. T., Canino, M. F., Bailey, K. M. and Bentzen, P. 2004. Inverse relationship between FST and microsatellite polymorphism in the marine fish, walleye Pollock (Theragra chalcogramma): implications for resolving weak population structure. Mol. Ecol. 13, 1799-1814. https://doi.org/10.1111/j.1365-294X.2004.02214.x
  32. Park, H. H. and Yoon, G. D. 1996. Prediction of walleye Pollock, Theragra chalcogramma, landings in Korea by time series analysis : AIC. Bull. Kor. Soc. Fish. Tech. 32, 235-240.
  33. Park, S. K. and OK, Y. S. 1986. Bio-economic research in fishery resouree management; walleye Pollock. Nongchongyungje 9, 59-68.
  34. Peakall, R. and Smouse, P. E. 2006. GENALEX 6: genetic analysis in excel. Population genetic software for teaching and research. Mol. Ecol. Notes 6, 288-295. https://doi.org/10.1111/j.1471-8286.2005.01155.x
  35. Perez-Enriquez, R., Takagi, M. and Taniguchi, N. 1999. Genetic variability and pedigree tracing of a hatchery-reared stock of red sea bream (Pagrus major) used for stock enhancement, based on microsatellite DNA markers. Aquaculture 173, 413-423. https://doi.org/10.1016/S0044-8486(98)00469-4
  36. Rousset, F. 2008. GENEPOP'007: a complete re-implementation of the GENEPOP software for Windows and Linux. Mol. Ecol. Resour. 8, 103-106. https://doi.org/10.1111/j.1471-8286.2007.01931.x
  37. Sekino, M., Saitoh, K., Yamada, T., Kumagai, A., Hara, M. and Yamashita, Y. 2003. Microsatellite-based pedigree tracing in a Japanese flounder Paralichthys oliaceus hatchery strain: implications for hatchery management related to stock enhancement program. Aquaculture 221, 255-263. https://doi.org/10.1016/S0044-8486(02)00667-1
  38. Seo, H., Kim, S., Seong, K. and Kang, S. 2006. Variability in scale growth rates of chum salmon (Oncorhynchus keta) in relation to climate changes in the late 1980s. Prog. Oceanogr. 68, 205-216. https://doi.org/10.1016/j.pocean.2006.02.003
  39. Sneath, P. H. A. and Sokal, R. R. 1973. Numerical taxonomy: The principles and practice of numerical classification. W. H. Freeman, San Francisco.
  40. Stenvik, J., Wesmajervi, M. S., Fjalestad, K. T., Damsgard, B. and Delghandi, M. 2006. Development of 25 gene-associated microsatellite markers of Atlantic cod (Gadus morhua L.). Mol. Ecol. Notes 6, 1105-1107. https://doi.org/10.1111/j.1471-8286.2006.01450.x
  41. Tautz, D. 1989. Hypervariability of simple sequences as a general source for polymorphic DNA markers. Nucl. Acids Res. 17, 6463-6471. https://doi.org/10.1093/nar/17.16.6463
  42. Van Dijk, H. and Van Delden, W. 1981. Genetic variability in Plantago species in relation to their ecology. 1. Genetic analysis of the allozyme variation in P. major subspecies. Theor. Appl. Genet. 60, 285-290. https://doi.org/10.1007/BF00263720
  43. Wesmajervi, M. S., Tafese, T., Stenvik, J., Fjalestad, K. T., Damsgard, B and Delghandi, M. 2007. Eight new micro satellite markers in Atlantic cod (Gadus morhua L.) Derived from an enriched genomic library. Mol. Ecol. Notes 7, 138-140.
  44. Weir, B. S. and Cockerham, C. C. 1984. Estimating F-sta tistics for the analysis of population structure. Evolution 38, 1358-1370. https://doi.org/10.2307/2408641