DOI QR코드

DOI QR Code

정족수 제어효소와 biofouling 제어

Quorum Quenching Enzymes and Biofouling Control

  • 전용재 (부경대학교 미생물학과) ;
  • 정원겸 (부경대학교 미생물학과) ;
  • 허혜숙 (부경대학교 미생물학과)
  • Jeon, Young Jae (Department of Microbiology, Pukyong National University) ;
  • Jeong, Won-Geom (Department of Microbiology, Pukyong National University) ;
  • Heo, Hye-Sook (Department of Microbiology, Pukyong National University)
  • 투고 : 2016.12.11
  • 심사 : 2016.12.27
  • 발행 : 2016.12.30

초록

정족수 인식 체계라 불리는 세균들의 세포간 의사교환 전략은 다양한 유전자의 발현조절을 통해, 생물막 성숙, 세포 외 고분자물질의 생산, 병원성 발현 및 항생제 생산 등과 같은 다양한 표현형을 조절하는 세균의 다세포성 행동 양식을 제어한다. 다수의 연구에 의하면 많은 종류의 그람 (Gram)음성 세균들이 정족수 인식체계에 필요한 신호전달 물질로 acyl-homoserine lactones (AHLs)를 사용하고 있으며, 이들은 생물막 형성에 중요한 인자로 작용함을 시사하였다. 이러한 정족수 인식체계에 의한 생물막의 형성은 물이 존재하는 모든 표면환경에서 불필요한 바오매스 축적이라는 심각한 기술적, 경제적 문제를 초래하고 있다. 최근 정족수 인체 체계를 교란하는 다수의 물질들이 다양한 미생물로부터 발견되어, 그들의 정족수 인식 체계와 관련된 주요 기능과 기작들이 밝혀지고 있다. 이러한 정족수 제어 물질들은 최근 다양한 산업에서 발생하는 생물 부착현상들을 제어할 수 있는, 환경 친화적이며 세균의 항생제 다재 내성을 완화 시킬 수 있는 새로운 방법으로 대두되고 있다. 따라서 본 논문은 세균의 정족수 인식 체계와 관련된 최근 정보, 정족수 인식 신호를 제어할 수 있는 정족수 제어 효소와 이러한 기술을 이용한 생물 부착 저해 방법 등을 논의하고자 한다.

Bacterial cell to cell communication strategies called quorum sensing (QS) using small diffusible signaling molecules (auto-inducers) govern the expression of various genes dependent on their population density manner. As a consequence of synthesis and response to the signaling molecules, individual planktonic cells synchronized group behaviors to control a diverse array of phenotypes such as maturation of biofilm, production of extra-polymeric substances (EPS), virulence, bioluminescence and antibiotic production. Many studies indicated that biofilm formations are associated with QS signaling molecules such as acyl-homoserine lactones (AHLs) mainly used by several Gram negative bacteria. The biofilm maturation causes undesirable biomass accumulation in various surface environments anywhere water is present called biofouling, which results in serious eco-technological problems. Numerous molecules that interfere the bacterial QS called quorum quenching (QQ), have been discovered from various microorganisms, and their functions and mechanisms associated with QS have also been elucidated. To resolve biofouling problems related to various industries, the novel approach based on QS interference has been emerged attenuating multi-drug resisting bacteria appearance and environmental toxicities, which may provide potential advantages over the conventional anti-biofouling approaches. Therefore this paper presents recent information related to bacterial quorum sensing system, quorum quenching enzymes that can control the QS signaling, and lastly discuss the anti-biofouling approaches using the quorum quenching.

키워드

참고문헌

  1. Beck von Bodman, S. and Farrand, S. K. 1995. Capsular polysaccharide biosynthesis and pathogenicity in Erwinia stewartii require induction by an N-acylhomoserine lactone autoinducer. J. Bacteriol. 177, 5000-5008. https://doi.org/10.1128/jb.177.17.5000-5008.1995
  2. Bijtenhoorn, P., Mayerhofer, H., Muller-Dieckmann, J., Utpatel, C., Schipper, C., Hornung, C., Szesny, M., Grond, S., Thurmer, A. and Brzuszkiewicz, E. 2011. A novel metagenomic short-chain dehydrogenase/reductase attenuates Pseudomonas aeruginosa biofilm formation and virulence on caenorhabditis elegans. PLoS One 6, e26278. https://doi.org/10.1371/journal.pone.0026278
  3. Bzdrenga, J., Daude, D., Remy, B., Jacquet, P., Plener, L., Elias, M. and Chabriere, E. 2016. Biotechnological applications of quorum quenching enzymes. Chem. Biol. Interact. (In press)
  4. Carius, L., Carius, A. B., McIntosh, M. and Grammel, H. 2013. Quorum sensing influences growth and photosynthetic membrane production in high-cell-density cultivations of Rhodospirillum rubrum. BMC Microbiol. 13, 1. https://doi.org/10.1186/1471-2180-13-1
  5. Carlier, A., Uroz, S., Smadja, B., Fray, R., Latour, X., Dessaux, Y. and Faure, D. 2003. The Ti plasmid of Agrobacterium tumefaciens harbors an attM-paralogous gene, aiiB, also encoding n-acyl homoserine lactonase activity. Appl. Environ. Microbiol. 69, 4989-4993. https://doi.org/10.1128/AEM.69.8.4989-4993.2003
  6. Choi, O., Yu, C. P., Fernandez, G. E. and Hu, Z. 2010. Interactions of nanosilver with Escherichia coli cells in planktonic and biofilm cultures. Water Res. 44, 6095-6103. https://doi.org/10.1016/j.watres.2010.06.069
  7. Chow, J. Y., Xue, B., Lee, K. H., Tung, A., Wu, L., Robinson, R. C. and Yew, W. S. 2010. Directed evolution of a thermostable quorum-quenching lactonase from the amidohydrolase superfamily. J. Biol. Chem. 285, 40911-40920. https://doi.org/10.1074/jbc.M110.177139
  8. Chowdhary, P. K., Keshavan, N., Nguyen, H. Q., Peterson, J. A., Gonzalez, J. E. and Haines, D. C. 2007. Bacillus megaterium CYP102A1 oxidation of acyl homoserine lactones and acyl homoserines. Biochemistry 46, 14429-14437. https://doi.org/10.1021/bi701945j
  9. Chun, C. K., Ozer, E. A., Welsh, M. J., Zabner, J. and Greenberg, E. 2004. Inactivation of a Pseudomonas aeruginosa quorum-sensing signal by human airway epithelia. Proc. Natl. Acad. Sci. USA 101, 3587-3590. https://doi.org/10.1073/pnas.0308750101
  10. Ciriminna, R., Bright, F. V. and Pagliaro, M. 2015. Ecofriendly antifouling marine coatings. ACS Sustainable Chem. Eng. 3, 559-565. https://doi.org/10.1021/sc500845n
  11. Coenye, T., Brackman, G., Rigole, P., De Witte, E., Honraet, K., Rossel, B. and Nelis, H. J. 2012. Eradication of Propionibacterium acnes biofilms by plant extracts and putative identification of icariin, resveratrol and salidroside as active compounds. Phytomedicine 19, 409-412. https://doi.org/10.1016/j.phymed.2011.10.005
  12. Cordeiro, A. L. and Werner, C. 2011. Enzymes for antifouling strategies. J. Adhes. Sci. Technol. 25, 2317-2344. https://doi.org/10.1163/016942411X574961
  13. Czajkowski, R., Krzyzanowska, D., Karczewska, J., Atkinson, S., Przysowa, J., Lojkowska, E., Williams, P. and Jafra, S. 2011. Inactivation of AHLs by Ochrobactrum sp. A44 depends on the activity of a novel class of AHL acylase. Environ. Microbiol. Rep. 3, 59-68. https://doi.org/10.1111/j.1758-2229.2010.00188.x
  14. Davies, D. G., Parsek, M. R., Pearson, J. P., Iglewski, B. H., Costerton, J. W. and Greenberg, E. P. 1998. The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280, 295-298. https://doi.org/10.1126/science.280.5361.295
  15. Del Vecchio, P., Elias, M., Merone, L., Graziano, G., Dupuy, J., Mandrich, L., Carullo, P., Fournier, B., Rochu, D. and Rossi, M. 2009. Structural determinants of the high thermal stability of Ssopox from the hyperthermophilic archaeon Sulfolobus solfataricus. Extremophiles 13, 461-470. https://doi.org/10.1007/s00792-009-0231-9
  16. Dobretsov, S., Dahms, H. U., YiLi, H., Wahl, M. and Qian, P. Y. 2007. The effect of quorum-sensing blockers on the formation of marine microbial communities and larval attachment. FEMS Microbiol. Ecol. 60, 177-188. https://doi.org/10.1111/j.1574-6941.2007.00285.x
  17. Dobretsov, S., Teplitski, M., Bayer, M., Gunasekera, S., Proksch, P. and Paul, V. J. 2011. Inhibition of marine biofouling by bacterial quorum sensing inhibitors. Biofouling 27, 893-905. https://doi.org/10.1080/08927014.2011.609616
  18. Dong, Y. H., Zhang, X. F., Xu, J. L. and Zhang, L. H. 2004. Insecticidal Bacillus thuringiensis silences Erwinia carotovora virulence by a new form of microbial antagonism, signal interference. Appl. Environ. Microbiol. 70, 954-960. https://doi.org/10.1128/AEM.70.2.954-960.2004
  19. Dong, Y. H., Wang, L. H., Xu, J. L., Zhang, H. B., Zhang, X. F. and Zhang, L. H. 2001. Quenching quorum-sensingdependent bacterial infection by an N-acyl homoserine lactonase. Nature 411, 813-817. https://doi.org/10.1038/35081101
  20. Dong, Y. H. and Zhang, L. H. 2005. Quorum sensing and quorum-quenching enzymes. J. Microbiol. 43, 101-109.
  21. Eberhard, A., Burlingame, A. L., Eberhard, C., Kenyon, G. L., Nealson, K. H. and Oppenheimer, N. J. 1981. Structural identification of autoinducer of Photobacterium fischeri Luciferase. Biochemistry 20, 2444-2449. https://doi.org/10.1021/bi00512a013
  22. Elias, M., Dupuy, J., Merone, L., Mandrich, L., Porzio, E., Moniot, S., Rochu, D., Lecomte, C., Rossi, M. and Masson, P. 2008. Structural basis for natural lactonase and promiscuous phosphotriesterase activities. J. Mol. Biol. 379, 1017-1028. https://doi.org/10.1016/j.jmb.2008.04.022
  23. Elias, M. and Tawfik, D. S. 2012. Divergence and convergence in enzyme evolution: Parallel evolution of paraoxonases from quorum-quenching lactonases. J. Biol. Chem. 287, 11-20. https://doi.org/10.1074/jbc.R111.257329
  24. Givskov, M., de Nys, R., Manefield, M., Gram, L., Maximilien, R., Eberl, L., Molin, S., Steinberg, P. D. and Kjelleberg, S. 1996. Eukaryotic interference with homoserine lactone-mediated prokaryotic signalling. J. Bacteriol. 178, 6618-6622. https://doi.org/10.1128/jb.178.22.6618-6622.1996
  25. Givskov, M., de Nys, R., Manefield, M., Gram, L., Maximilien, R., Eberl, L., Molin, S., Steinberg, P. D. and Kjelleberg, S. 1996. Eukaryotic interference with homoserine lactonemediated prokaryotic signalling. J. Bacteriol. 178, 6618-6622. https://doi.org/10.1128/jb.178.22.6618-6622.1996
  26. Gould, T. A., Herman, J., Krank, J., Murphy, R. C. and Churchill, M. E. 2006. Specificity of acyl-homoserine lactone synthases examined by mass spectrometry. J. Bacteriol. 188, 773-783. https://doi.org/10.1128/JB.188.2.773-783.2006
  27. Grandclement, C., Tannieres, M., Morera, S., Dessaux, Y. and Faure, D. 2016. Quorum quenching: Role in nature and applied developments. FEMS Microbiol. Rev. 40, 86-116. https://doi.org/10.1093/femsre/fuv038
  28. Harding, J. L. and Reynolds, M. M. 2014. Combating medical device fouling. Trends Biotechnol. 32, 140-146. https://doi.org/10.1016/j.tibtech.2013.12.004
  29. Hiblot, J., Gotthard, G., Chabriere, E. and Elias, M. 2012. Structural and enzymatic characterization of the lactonase sis lac from Sulfolobus islandicus. PLoS One 7, e47028. https://doi.org/10.1371/journal.pone.0047028
  30. Hoch, J. A. 1993. Regulation of the phosphorelay and the initiation of sporulation in bacillus subtilis. Annu. Rev. Microbiol. 47, 441-465. https://doi.org/10.1146/annurev.mi.47.100193.002301
  31. Huang, J., Shi, Y., Zeng, G., Gu, Y., Chen, G., Shi, L., Hu, Y., Tang, B. and Zhou, J. 2016. Acyl-homoserine lactonebased quorum sensing and quorum quenching hold promise to determine the performance of biological wastewater treatments: An overview. Chemosphere 157, 137-151. https://doi.org/10.1016/j.chemosphere.2016.05.032
  32. Huang, J. J., Petersen, A., Whiteley, M. and Leadbetter, J. R. 2006. Identification of QuiP, the product of gene PA1032, as the second acyl-homoserine lactone acylase of Pseudomonas aeruginosa PAO1. Appl. Environ. Microbiol. 72, 1190-1197.
  33. Jiang, W., Xia, S., Liang, J., Zhang, Z. and Hermanowicz, S. W. 2013. Effect of quorum quenching on the reactor performance, biofouling and biomass characteristics in membrane bioreactors. Water Res. 47, 187-196. https://doi.org/10.1016/j.watres.2012.09.050
  34. Kalishwaralal, K., BarathManiKanth, S., Pandian, S. R. K., Deepak, V. and Gurunathan, S. 2010. Silver nanoparticles impede the biofilm formation by Pseudomonas aeruginosa and Staphylococcus epidermidis. Colloids Surfaces B. 79, 340-344. https://doi.org/10.1016/j.colsurfb.2010.04.014
  35. Karlsson, T., Turkina, M. V., Yakymenko, O., Magnusson, K. E. and Vikstrom, E. 2012. The Pseudomonas aeruginosa N-acylhomoserine lactone quorum sensing molecules target IQGAP1 and modulate epithelial cell migration. PLoS Pathog. 8, e1002953. https://doi.org/10.1371/journal.ppat.1002953
  36. Kim, J. H., Choi, D. C., Yeon, K. M., Kim, S. R. and Lee, C. H. 2011. Enzyme-immobilized nanofiltration membrane to mitigate biofouling based on quorum quenching. Environ. Sci. Technol. 45, 1601-1607. https://doi.org/10.1021/es103483j
  37. Kim, M. H., Choi, W. C., Kang, H. O., Lee, J. S., Kang, B. S., Kim, K. J., Derewenda, Z. S., Oh, T. K., Lee, C. H. and Lee, J. K. 2005. The molecular structure and catalytic mechanism of a quorum-quenching N-acyl-l-homoserine lactone hydrolase. Proc. Natl. Acad. Sci. USA 102, 17606-17611. https://doi.org/10.1073/pnas.0504996102
  38. Kim, S. R., Oh, H. S., Jo, S. J., Yeon, K. M., Lee, C. H., Lim, D. J., Lee, C. H. and Lee, J. K. 2013. Biofouling control with bead-entrapped quorum quenching bacteria in membrane bioreactors: Physical and biological effects. Environ. Sci. Technol. 47, 836-842. https://doi.org/10.1021/es303995s
  39. Kristensen, J. B., Meyer, R. L., Laursen, B. S., Shipovskov, S., Besenbacher, F. and Poulsen, C. H. 2008. Antifouling enzymes and the biochemistry of marine settlement. Biotech. Adv. 26, 471-481. https://doi.org/10.1016/j.biotechadv.2008.05.005
  40. Labbate, M., Queck, S. Y., Koh, K. S., Rice, S. A., Givskov, M. and Kjelleberg, S. 2004. Quorum sensing-controlled biofilm development in Serratia liquefaciens MG1. J. Bacteriol. 186, 692-698. https://doi.org/10.1128/JB.186.3.692-698.2004
  41. Lade, H., Paul, D. and Kweon, J. H. 2014. Isolation and molecular characterization of biofouling bacteria and profiling of quorum sensing signal molecules from membrane bioreactor activated sludge. Int. J. Biol. Sci. 15, 2255-2273.
  42. Lade, H., Paul, D. and Kweon, J. H. 2014. Quorum quenching mediated approaches for control of membrane biofouling. Int. J. Biol. Sci. 10, 550-565. https://doi.org/10.7150/ijbs.9028
  43. Leadbetter, J. R. and Greenberg, E. 2000. Metabolism of acyl- homoserine lactone quorum-sensing signals by Variovorax paradoxus. J. Bacteriol. 182, 6921-6926. https://doi.org/10.1128/JB.182.24.6921-6926.2000
  44. Lee, S., Park, S. K., Kwon, H., Lee, S. H., Lee, K., Nahm, C. H., Jo, S. J., Oh, H. S., Park, P. K., Choo, K. H., Lee, C. H. and Yi, T. 2016. Crossing the border between laboratory and field: Bacterial quorum quenching for anti-biofouling strategy in an MBR. Environ. Sci. Technol. 50, 1788-1795. https://doi.org/10.1021/acs.est.5b04795
  45. Lewenza, S., Conway, B., Greenberg, E. and Sokol, P. A. 1999. Quorum sensing in Burkholderia cepacia: Identification of the LuxRI homologs CepRI. J. Bacteriol. 181, 748-756.
  46. Lewis, A. L. 2000. Phosphorylcholine-based polymers and their use in the prevention of biofouling. Colloids Surf. B. Biointerfaces 18, 261-275. https://doi.org/10.1016/S0927-7765(99)00152-6
  47. Lin, Y. H., Xu, J. L., Hu, J., Wang, L. H., Ong, S. L., Leadbetter, J. R. and Zhang, L. H. 2003. Acyl-homoserine lactone acylase from Ralstonia strain XJ12B represents a novel and potent class of quorum-quenching enzymes. Mol. Microbiol. 47, 849-860. https://doi.org/10.1046/j.1365-2958.2003.03351.x
  48. Littlechild, J. A. 2015. Archaeal enzymes and applications in industrial biocatalysts. Archaea 10, 2015.
  49. Liu, D., Thomas, P. W., Momb, J., Hoang, Q. Q., Petsko, G. A., Ringe, D. and Fast, W. 2007. Structure and specificity of a quorum-quenching lactonase (AiiB) from Agrobacterium tumefaciens. Biochemistry 46, 11789-11799. https://doi.org/10.1021/bi7012849
  50. Manefield, M., Welch, M., Givskov, M., Salmond, G. P. and Kjelleberg, S. 2001. Halogenated furanones from the red alga, Delisea pulchra, inhibit carbapenem antibiotic synthesis and exoenzyme virulence factor production in the phytopathogen Erwinia carotovora. FEMS Microbiol. Lett. 205, 131-138. https://doi.org/10.1111/j.1574-6968.2001.tb10936.x
  51. Martin-Rodriguez, A. J., Babarro, J. M. F., Lahoz, F., Sanson, M., Martin, V. S., Norte, M. and Fernandez, J. J. 2015. From broad-spectrum biocides to quorum sensing disruptors and mussel repellents: Antifouling profile of alkyl triphenylphosphonium salts. PLoS ONE 10, e0123652. https://doi.org/10.1371/journal.pone.0123652
  52. McClean, K. H., Winson, M. K., Fish, L., Taylor, A., Chhabra, S. R., Camara, M., Daykin, M., Lamb, J. H., Swift, S. and Bycroft, B. W. 1997. Quorum sensing and Chromobacterium violaceum: Exploitation of violacein production and inhibition for the detection of N-acylhomoserine lactones. Microbiology 143, 3703-3711. https://doi.org/10.1099/00221287-143-12-3703
  53. Mei, G. Y., Yan, X. X., Turak, A., Luo, Z. Q. and Zhang, L. Q. 2010. Aidh, an alpha/beta-hydrolase fold family member from an Ochrobactrum sp. strain, is a novel N-acylhomoserine lactonase. Appl. Environ. Microbiol. 76, 4933-4942. https://doi.org/10.1128/AEM.00477-10
  54. Meng, X., Shi, Y., Ji, W., Meng, X., Zhang, J., Wang, H., Lu, C., Sun, J. and Yan, Y. 2011. Application of a bacteriophage lysin to disrupt biofilms formed by the animal pathogen Streptococcus suis. Appl. Environ. Microbiol. 77, 8272-8279. https://doi.org/10.1128/AEM.05151-11
  55. Mohanty, S., Mishra, S., Jena, P., Jacob, B., Sarkar, B. and Sonawane, A. 2012. An investigation on the antibacterial, cytotoxic, and antibiofilm efficacy of starch-stabilized silver nanoparticles. Nanomedicine 8, 916-924. https://doi.org/10.1016/j.nano.2011.11.007
  56. Momb, J., Wang, C., Liu, D., Thomas, P. W., Petsko, G. A., Guo, H., Ringe, D. and Fast, W. 2008. Mechanism of the quorum-quenching lactonase (AiiA) from Bacillus thuringiensis. Substrate modeling and active site mutations. Biochemistry 47, 7715-7725. https://doi.org/10.1021/bi8003704
  57. Morohoshi, T., Inaba, T., Kato, N., Kanai, K. and Ikeda, T. 2004. Identification of quorum-sensing signal molecules and the luxri homologs in fish pathogen Edwardsiella tarda. J. Biosci. Bioeng. 98, 274-281. https://doi.org/10.1016/S1389-1723(04)00281-6
  58. Ng, F. S., Wright, D. M. and Seah, S. Y. 2011. Characterization of a phosphotriesterase-like lactonase from Sulfolobus solfataricus and its immobilization for disruption of quorum sensing. Appl. Environ. Microbiol. 77, 1181-1186. https://doi.org/10.1128/AEM.01642-10
  59. Oh, H. S., Yeon, K. M., Yang, C. S., Kim, S. R., Lee, C. H., Park, S. Y., Han, J. Y. and Lee, J. K. 2012. Control of membrane biofouling in mbr for wastewater treatment by quorum quenching bacteria encapsulated in microporous membrane. Environ. Sci. Technol. 46, 4877-4884. https://doi.org/10.1021/es204312u
  60. Olsen, S. M., Pedersen, L. T., Laursen, M., Kiil, S. and Dam-Johansen, K. 2007. Enzyme-based antifouling coatings: A review. Biofouling 23, 369-383. https://doi.org/10.1080/08927010701566384
  61. Paggi, R. A., Martone, C. B., Fuqua, C. and De Castro, R. E. 2003. Detection of quorum sensing signals in the haloalkaliphilic archaeon Natronococcus occultus. FEMS Microbiol. Lett. 221, 49-52. https://doi.org/10.1016/S0378-1097(03)00174-5
  62. Park, S. H., Kang, J. Y., Kim, D. H., Ahn, T. and Yun, C. H. 2012. The flavin-containing reductase domain of cytochrome P450 BM3 acts as a surrogate for mammalian NADPG-P450 reductase. Biomol. Ther. 20, 562. https://doi.org/10.4062/biomolther.2012.20.6.562
  63. Park, S. Y., Lee, S. J., Oh, T. K., Oh, J. W., Koo, B. T., Yum, D. Y. and Lee, J. K. 2003. Ahld, an N-acylhomoserine lactonase in Arthrobacter sp., and predicted homologues in other bacteria. Microbiology 149, 1541-1550. https://doi.org/10.1099/mic.0.26269-0
  64. Park, S. Y., Hwang, B. J., Shin, M. H., Kim, J. A., Kim, H. K. and Lee, J. K. 2006. N-acylhomoserine lactonase producing Rhodococcus spp. with different AHL-degrading activities. FEMS Microbiol. Lett. 261, 102-108. https://doi.org/10.1111/j.1574-6968.2006.00336.x
  65. Park, S. Y., Kang, H. O., Jang, H. S., Lee, J. K., Koo, B. T. and Yum, D. Y. 2005. Identification of extracellular N-acylhomoserine lactone acylase from a Streptomyces sp. and its application to quorum quenching. Appl. Environ. Microbiol. 71, 2632-2641. https://doi.org/10.1128/AEM.71.5.2632-2641.2005
  66. Pierson, L. S., Keppenne, V. D. and Wood, D. W. 1994. Phenazine antibiotic biosynthesis in Pseudomonas aureofaciens 30-84 is regulated by PhzR in response to cell density. J. Bacteriol. 176, 3966-3974. https://doi.org/10.1128/jb.176.13.3966-3974.1994
  67. Rai, N., Rai, R. and Venkatesh, K. 2015. Quorum sensing biosensors, pp. 173-183. In: Kalia, V. C. (eds), Quorum sensing vs quorum quenching: A battle with no end in sight, Springer.
  68. Riaz, K., Elmerich, C., Moreira, D., Raffoux, A., Dessaux, Y. and Faure, D. 2008. A metagenomic analysis of soil bacteria extends the diversity of quorum‐quenching lactonases. Environ. Microbiol. 10, 560-570. https://doi.org/10.1111/j.1462-2920.2007.01475.x
  69. Riedel, K., Hentzer, M., Geisenberger, O., Huber, B., Steidle, A., Wu, H., Hoiby, N., Givskov, M., Molin, S. and Eberl, L. 2001. N-acylhomoserine-lactone-mediated communication between Pseudomonas aeruginosa and Burkholderia cepacia in mixed biofilms. Microbiology 147, 3249-3262. https://doi.org/10.1099/00221287-147-12-3249
  70. Rivas, M., Seeger, M., Holmes, D. S. and Jedlicki, E. 2005. A Lux-like quorum sensing system in the extreme acidophile Acidithiobacillus ferrooxidans. Biol. Res. 38, 283-297.
  71. Romero, M., Avendano-Herrera, R., Magarinos, B., Camara, M. and Otero, A. 2010. Acylhomoserine lactone production and degradation by the fish pathogen Tenacibaculum maritimum, a member of the Cytophaga-Flavobacterium-Bacteroides (CFB) group. FEMS Microbiol. Lett. 304, 131-139. https://doi.org/10.1111/j.1574-6968.2009.01889.x
  72. Romero, M., Diggle, S. P., Heeb, S., Camara, M. and Otero, A. 2008. Quorum quenching activity in Anabaena sp. PCC 7120: Identification of AiiC, a novel AHL-acylase. FEMS Microbiol. Lett. 280, 73-80. https://doi.org/10.1111/j.1574-6968.2007.01046.x
  73. Romero, M., Martin-Cuadrado, A. B., Roca-Rivada, A., Cabello, A. M. and Otero, A. 2011. Quorum quenching in cultivable bacteria from dense marine coastal microbial communities. FEMS Microbiol. Ecol. 75, 205-217. https://doi.org/10.1111/j.1574-6941.2010.01011.x
  74. Sadekuzzaman, M., Yang, S., Mizan, M. F. R. and Ha, S. D. 2015. Current and recent advanced strategies for combating biofilms. Compr. Rev. Food Sci. Food Saf. 14, 491-509. https://doi.org/10.1111/1541-4337.12144
  75. Schultz, M., Bendick, J., Holm, E. and Hertel, W. 2011. Economic impact of biofouling on a naval surface ship. Biofouling 27, 87-98. https://doi.org/10.1080/08927014.2010.542809
  76. Schultz, M. P. 2007. Effects of coating roughness and biofouling on ship resistance and powering. Biofouling 23, 331-341. https://doi.org/10.1080/08927010701461974
  77. Seo, M. J., Lee, B. S., Pyun, Y. R. and Park, H. 2011. Isolation and characterization of N-acylhomoserine lactonase from the thermophilic bacterium, Geobacillus caldoxylosilyticus YS-8. Biosci. Biotechnol. Biochem. 75, 1789-1795. https://doi.org/10.1271/bbb.110322
  78. Sharif, D. I., Gallon, J., Smith, C. J. and Dudley, E. 2008. Quorum sensing in cyanobacteria: N-octanoyl-homoserine lactone release and response, by the epilithic colonial cyanobacterium Gloeothece PCC6909. ISME J. 2, 1171-1182. https://doi.org/10.1038/ismej.2008.68
  79. Siddiqui, M. F., Rzechowicz, M., Harvey, W., Zularisam, A. W. and Anthony, G. F. 2015. Quorum sensing based membrane biofouling control for water treatment: A review. J. Water Process Eng. 7, 112-122. https://doi.org/10.1016/j.jwpe.2015.06.003
  80. Singh, R. P., Desouky, S. E. and Nakayama, J. 2016. Quorum quenching strategy targeting gram-positive pathogenic bacteria. Adv. Exp. Med. Biol. 901, 109-130. https://doi.org/10.1007/5584_2016_1
  81. Sio, C. F., Otten, L. G., Cool, R. H., Diggle, S. P., Braun, P. G., Bos, R., Daykin, M., Camara, M., Williams, P. and Quax, W. J. 2006. Quorum quenching by an N-acyl-homoserine lactone acylase from Pseudomonas aeruginosa PAO1. Infect. Immun. 74, 1673-1682. https://doi.org/10.1128/IAI.74.3.1673-1682.2006
  82. Steidle, A., Allesen-Holm, M., Riedel, K., Berg, G., Givskov, M., Molin, S. and Eberl, L. 2002. Identification and characterization of an N-acylhomoserine lactone-dependent quorum- sensing system in Pseudomonas putida strain IsoF. Appl. Environ. Microbiol. 68, 6371-6382. https://doi.org/10.1128/AEM.68.12.6371-6382.2002
  83. Swain, G. and Shinjo, N. 2014. Comparing biofouling control treatments for use on aquaculture nets. Int. J. Mol. Sci. 15, 22142-22154. https://doi.org/10.3390/ijms151222142
  84. Swift, S., Karlyshev, A. V., Fish, L., Durant, E. L., Winson, M. K., Chhabra, S. R., Williams, P., Macintyre, S. and Stewart, G. 1997. Quorum sensing in Aeromonas hydrophila and Aeromonas salmonicida: Identification of the LuxRI homologs AhyRI and AsaRI and their cognate N-acylhomoserine lactone signal molecules. J. Bacteriol. 179, 5271-5281. https://doi.org/10.1128/jb.179.17.5271-5281.1997
  85. Tait, K., Joint, I., Daykin, M., Milton, D. L., Williams, P. and Camara, M. 2005. Disruption of quorum sensing in seawater abolishes attraction of zoospores of the green alga Ulva to bacterial biofilms. Environ. Microbiol. 7, 229-240. https://doi.org/10.1111/j.1462-2920.2004.00706.x
  86. Uroz, S., Oger, P. M., Chapelle, E., Adeline, M. T., Faure, D. and Dessaux, Y. 2008. A Rhodococcus qsdA-encoded enzyme defines a novel class of large-spectrum quorumquenching lactonases. Appl. Environ. Microbiol. 74, 1357-1366. https://doi.org/10.1128/AEM.02014-07
  87. Watson, W. T., Minogue, T. D., Val, D. L., von Bodman, S. B. and Churchill, M. E. 2002. Structural basis and specificity of acyl-homoserine lactone signal production in bacterial quorum sensing. Mol. Cell 9, 685-694. https://doi.org/10.1016/S1097-2765(02)00480-X
  88. Weerasekara, N. A., Choo, K. H. and Lee, C. H. 2014. Hybridization of physical cleaning and quorum quenching to minimize membrane biofouling and energy consumption in a membrane bioreactor. Water Res. 67, 1-10. https://doi.org/10.1016/j.watres.2014.08.049
  89. Xu, F., Byun, T., Dussen, H. J. and Duke, K. R. 2003. Degradation of N-acylhomoserine lactones, the bacterial quorum-sensing molecules, by acylase. J. Biotechnol. 101, 89-96. https://doi.org/10.1016/S0168-1656(02)00305-X
  90. Yeon, K. M., Cheong, W. S., Oh, H. S., Lee, W. N., Hwang, B. K., Lee, C. H., Beyenal, H. and Lewandowski, Z. 2009. Quorum sensing: A new biofouling control paradigm in a membrane bioreactor for advanced wastewater treatment. Environ. Sci. Technol. 43, 380-385. https://doi.org/10.1021/es8019275
  91. Yeon, K. M., Lee, C. H. and Kim, J. 2009. Magnetic enzyme carrier for effective biofouling control in the membrane bioreactor based on enzymatic quorum quenching. Environ. Sci. Technol. 43, 7403-7409. https://doi.org/10.1021/es901323k
  92. Yeon, K. M., Park, J. S., Lee, C. H. and Kim, S. M. 2005. Membrane coupled high-performance compact reactor: A new MBR system for advanced wastewater treatment. Water Res. 39, 1954-1961. https://doi.org/10.1016/j.watres.2005.03.006
  93. Zhang, K., Zheng, X., Shen, D. S., Wang, M. Z., Feng, H. J., He, H. Z., Wang, S. and Wang, J. H. 2015. Evidence for existence of quorum sensing in a bioaugmented system by acylated homoserine lactone-dependent quorum quenching. Environ. Sci. Pollut. Res. Int. 22, 6050-6056. https://doi.org/10.1007/s11356-014-3795-6
  94. Zhang, W. and Li, C. 2015. Exploiting quorum sensing interfering strategies in gram-negative bacteria for the enhancement of environmental applications. Front. Microbiol. 6, 1535.
  95. Zhang, Y., An, J., Ye, W., Yang, G., Qian, Z. G., Chen, H. F., Cui, L. and Feng, Y. 2012. Enhancing the promiscuous phosphotriesterase activity of a thermostable lactonase (GkaP) for the efficient degradation of organophosphate pesticides. Appl. Environ. Microbiol. 78, 6647-6655. https://doi.org/10.1128/AEM.01122-12
  96. Zhang, Y., Liu, J., Tang, K., Yu, M., Coenye, T. and Zhang, X. H. 2015. Genome analysis of Flaviramulus ichthyoenteri Th78(T) in the family Flavobacteriaceae: Insights into its quorum quenching property and potential roles in fish intestine. BMC Genomics 16, 38. https://doi.org/10.1186/s12864-015-1275-0