References
- Byeon, S. E., Lee, J., Kim, J. H., Yang, W. S., Kwak, Y. S., Kim, S. Y., Choung, E. S., Rhee, M. H. and Cho, J. Y. 2012. Molecular mechanism of macrophage activation by red ginseng acidic polysaccharide from Korean red ginseng. Mediators Inflamm. 2012, 732860.
- Cario, E. and Podolsky, D. K. 2000. Differential alteration in intestinal epithelial cell expressionof toll-like receptor 3 (TLR3) and TLR4 in inflammatory bowel disease. Infect. Immun. 68, 7010-7017. https://doi.org/10.1128/IAI.68.12.7010-7017.2000
- Chu, S. F. and Zhang, J. T. 2009. New achievements in ginseng research and its future prospects. Chin. J. Integr. Med. 15, 403-408. https://doi.org/10.1007/s11655-009-0403-6
- Cuzzocrea, S. and Salvemini, D. 2007. Molecular mechanisms involved in the reciprocal regulation of cyclooxygenase and nitric oxide synthase enzymes. Kidney Int. 71, 290-297. https://doi.org/10.1038/sj.ki.5002058
- Friedl, R., Moeslinger, T., Kopp, B. and Spieckermann, P. G. 2001. Stimulation of nitric oxide synthesis by the aqueous extract of Panax ginseng root in RAW264.7 cells. Brit. J. Pharmacol. 134, 1663-1670. https://doi.org/10.1038/sj.bjp.0704425
- Hasegawa, H. 2004. Proof of the mysterious efficacy of ginseng: basic and clinical trials: metabolic activation of ginsenoside: deglycosylation by intestinal bacteria and esterification with fatty acid. J. Pharmacol. Sci. 95,153-157. https://doi.org/10.1254/jphs.FMJ04001X4
- Hoshino, K., Takeuchi, O., Kawai, T., Sanjo, H., Ogawa, T. and Takeda, Y. et al. 1999. Cutting edge: toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the LPS gene product. J. Immunol. 162, 3749-3752.
- Hui, D. Y. 2008. Intimal hyperplasia in murine models. Curr. Drug Targets 9, 251-260. https://doi.org/10.2174/138945008783755601
- Ichikawaa, T., Li, J., Nagarkatti, P., Nagarkatti, M., Hofsethc, L. J., Windust, A. and Cui, T. 2009. American ginseng preferentially suppresses STAT/iNOS signaling in activated macrophages. J. Ethnopharmacol. 125, 145-150. https://doi.org/10.1016/j.jep.2009.05.032
- Jeong, H. G., Pokharel, Y. R., Han, E. H. and Kang, K. W. 2007. Induction of cyclooxygenase-2 by ginsenoside Rd via activation of CCAAT-enhancer binding proteins and cyclic AMP response binding protein. Biochem. Biophys. Res. Commun. 359, 51-56. https://doi.org/10.1016/j.bbrc.2007.05.034
- Kim, D. H. 2012. Chemical diversity of Panax ginseng, Panax quinquifolium, and Panax notoginseng. J. Ginseng Res. 36, 1-15. https://doi.org/10.5142/jgr.2012.36.1.1
- Kim, H. S. and Moon, E. Y. 2009. Reactive oxygen species-induced expression of B cell activating factor (BAFF) is independent of Toll-like receptor 4 and myeloid differentiation primary response gene 88. Biomol. Ther. 17, 144-150. https://doi.org/10.4062/biomolther.2009.17.2.144
- Kim, T. W., Joh, E. H., Kim, B. and Kim, D. H. 2012. Ginsenoside Rg5 ameliorates lung inflammation in mice by inhibiting the binding of LPS to toll-like receptor-4 on macrophages. Int. Immunopharmacol. 12, 110-116. https://doi.org/10.1016/j.intimp.2011.10.023
- Kwak, Y. S., Kyung, J. S., Kim, J. S., Cho, J. Y. and Rhee, M. H. 2010. Anti-hyperlipidemic effects of red ginseng acidic polysaccharide from Korean red ginseng. Biol. Pharm. Bull. 33, 468-472. https://doi.org/10.1248/bpb.33.468
- Lee, K. W., Jung, S. Y., Choi, S. M. and Yang, E. J. 2012. Effects of ginsenoside Re on LPS-induced inflammatory mediators in BV2 microglial cells. BMC Complement. Altern. Med. 12, 196. https://doi.org/10.1186/1472-6882-12-S1-P196
- Lee, S. H., Soyoola, E., Chanmugam, P., Hart, S., Sun, W., Zhong, H., Liou, S., Simmons, D. and Hwang, D. 1992. Selective expression of mitogen-inducible cyclooxygenase in macrophages stimulated with lipopolysaccharide. J. Biol. Chem. 267, 25934-25938.
- Mariotto, S., Suzuki, Y., Persichini, T., Colasanti, M., Suzuki, H. and Cantoni, O. 2007. Cross-talk between NO and arachidonic acid in inflammation. Curr. Med. Chem. 14, 1940-1944. https://doi.org/10.2174/092986707781368531
- Mathrani, V. C., Kenyon, N. J., Zeki, A. and Last, J. A. 2007. Mouse models of asthma: can they give us mechanistic insights into the role of nitric oxide? Curr. Med. Chem. 14, 2204-2213. https://doi.org/10.2174/092986707781389628
- Moynagh, P. N. 2005. The NF-kappaB pathway. J. Cell Sci. 118, 4589-4592. https://doi.org/10.1242/jcs.02579
- Nathan, C. 1992. Nitric oxide as a secretory product of mammalian cells. FASEB J. 6, 3051-3064. https://doi.org/10.1096/fasebj.6.12.1381691
- Nathan, C. and Xie, Q. W. 1994. Nitric oxide synthases: roles, tolls, and controls. Cell 78, 915-918. https://doi.org/10.1016/0092-8674(94)90266-6
- Pacher, P., Beckman, J. S. and Liaudet, L. 2007. Nitric oxide and peroxynitrite in health and disease. Physiol. Rev. 87, 315-424. https://doi.org/10.1152/physrev.00029.2006
- Ran, S. and Montgomery, K. E. 2012. Macrophage-mediated lymphangiogenesis: the emerging role of macrophages as lymphatic endothelial progenitors. Cancers (Basel) 4, 618-657. https://doi.org/10.3390/cancers4030618
- Rossol, M., Heine, H., Meusch, U., Quandt, D., Klein, C., Sweet, M. J. and Hauschildt, S. 2011. LPS-induced cytokine production in human monocytes and macrophages. Crit. Rev. Immunol. 31, 379-446. https://doi.org/10.1615/CritRevImmunol.v31.i5.20
- Salinas, G., Rangasetty, U. C., Uretsky, B. F. and Birnbaum, Y. 2007. The cycloxygenase 2 (COX-2) story: it's time to explain, not inflame. J. Cardiovasc. Pharmacol. Ther. 12, 98-111. https://doi.org/10.1177/1074248407301172
- Tachikawa, E., Kudo, K., Harada, K., Kashimoto, T., Miyate, Y., Kakizaki, A. and Takahashi, E. 1999. Effects of ginseng saponins on responses induced by various receptor stimuli. Eur. J. Pharmacol. 369, 23-32. https://doi.org/10.1016/S0014-2999(99)00043-6
- Tak, P. P. and Firestein, G. S. 2001. NF-kappaB: a key role in inflammatory diseases. J. Clin. Invest. 107, 7-11. https://doi.org/10.1172/JCI11830
- Tsatsanis, C., Androulidaki, A., Venihaki, M. and Margioris, A. N. 2006. Signaling networks regulating cyclooxygenase-2. Int. J. Biochem. Cell Biol. 38, 1654-1661. https://doi.org/10.1016/j.biocel.2006.03.021
- Tsoyi, K., Kim, H. J., Shin, J. S., Kim, D. H., Cho, H. J., Lee, S. S., Ahn, S. K., Yun-Choi, H. S., Lee, J. H., Seo, H. G. and Chang, K. C. 2008. HO-1 and JAK-2/STAT-1 signals are involved in preferential inhibition of iNOS over COX-2 gene expression by newly synthesized tetrahydroisoquinoline alkaloid, CKD712, in cells activated with lipopolysacchride. Cell. Signal. 10, 1839-1847.
-
Wu, C. F., Bi, X. L. and Yang, J. Y., et al. 2007. Differential effects of ginsenosides on NO and TNF-
${\alpha}$ production by LPS-activated N9 microglia. Int. Immunopharmacol. 7, 313-320. https://doi.org/10.1016/j.intimp.2006.04.021