DOI QR코드

DOI QR Code

Differential Cytotoxic Effects of Jaspine B in Various Cancer Cells

다양한 암세포주에서 Jaspine B의 함암활성 비교

  • Lee, Jihoon (College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University) ;
  • Choi, Kwangik (College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University) ;
  • Kwon, Mihwa (College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University) ;
  • Lee, Dongjoo (College of Pharmacy, Ajou University) ;
  • Choi, Min-Koo (College of Pharmacy, Dankook University) ;
  • Song, Im-Sook (College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University)
  • Received : 2016.07.22
  • Accepted : 2016.08.16
  • Published : 2016.12.30

Abstract

Jaspine B is an anhydrophytosphingosine that is isolated from a marine sponge. Because of its structural similarity to sphingosine, it shows anti-cancer effects in human carcinomas. Therefore, this study aims to investigate its anti-proliferative effect on various cancer cells and to correlate its association with the intracellular accumulation of Jaspine B in relevant cancer cells. The anti-proliferative effect of Jaspine B in various cancer cells was determined by a cell viability test, and the intracellular concentration of Jaspine B in relevant cancer cells was determined using mass spectrometry coupled with liquid chromatography. The correlation coefficient and p value between the cytotoxicity and the cell accumulation of Jaspine B were determined using SPSS 16.1. The cytotoxicity of Jaspine B varied depending on the type of cancer cell when compared the $EC_{50}$ values of Jaspine B. Breast and melanoma cancer cells were susceptible to Jaspine B, whereas renal carcinoma cells were resistant. The intracellular concentrations of Jaspine B had a reciprocal correlation with the $EC_{50}$ values in the same cells (r = 0.838). The results suggested that the anti-proliferative effect of Jaspine B was associated with the cellular accumulation of this compound. However, Jaspine B was not a substrate for P-glycoprotein and breast cancer resistance protein, as major efflux pumps caused multidrug resistance. The maintenance of a high intracellular concentration is crucial for the cytotoxic effect of Jaspine B; however, efflux pumps may not be a controlling factor for Jaspine B-related resistance in cancer cells.

Jaspine B는 석회해면류에서 추출된 sphingosine유도체로 인간 암세포에서의 항암활성이 보고되었다. 그러므로 본 연구는 다양한 인간 암세포주에서 항암활성을 비교하고, 암세포주에서의 Jaspine B의 농도를 측정하여 항암 활성과의 연관성을 확인하고자 하였다. 항암활성은 MTT 방법을 이용하여 측정하였고, $EC_{50}$ 값으로 표현하였다. 암세포주내 Jaspine B의 농도는 LC-MS/MS를 이용하여 분석하였다. 항암활성은 세포주마다 다양하게 나타났는데, 유방암과 흑색종 세포주에서 항암활성이 높게 나타났으며($EC_{50}$ 각각 $2.3{\mu}M$$2.6{\mu}M$), 신장암세포주에서는 $EC_{50}$ 값이 $29.4{\mu}M$이었다. 암세포주에서의 $EC_{50}$ 값은 동일한 세포에서의 Jaspine B 농도와 높은 상관성을 나타내었으며(r=0.838), 암세포내 약물농도를 조절하는 것으로 잘 알려진 P-glycoprotein과 breast cancer resistance protein 등의 배출수송계와는 관련이 없음을 확인하였다. 이상의 결과는 세포내 약물농도를 높게 유지하는 것이 항암활성에 매우 중요하며, 세포내 약물농도가 암세포주에 따라 다른 약효를 보이는 원인으로 사료된다.

Keywords

References

  1. Bao, L., Hazari, S., Mehra, S., Kaushal, D., Moroz, K. and Dash, S. 2012. Increased expression of p-glycoprotein and doxorubicin chemoresistance of metastatic breast cancer is regulated by mir-298. Am. J. Pathol. 180, 2490-2503. https://doi.org/10.1016/j.ajpath.2012.02.024
  2. French, K. J., Schrecengost, R. S., Lee, B. D., Zhuang, Y., Smith, S. N., Eberly, J. L., Yun, J. K. and Smith, C. D. 2003. Discovery and evaluation of inhibitors of human sphingosine kinase. Cancer Res. 63, 5962-5969.
  3. Gately, D. P. and Howell, S. B. 1993. Cellular accumulation of the anticancer agent cisplatin: A review. Br. J. Cancer 67, 1171-1176. https://doi.org/10.1038/bjc.1993.221
  4. Giacomini, K. M., Huang, S. M., Tweedie, D. J., Benet, L. Z., Brouwer, K. L., Chu, X., Dahlin, A., Evers, R., Fischer, V., Hillgren, K. M., Hoffmaster, K. A., Ishikawa, T., Keppler, D., Kim, R. B., Lee, C. A., Niemi, M., Polli, J. W., Sugiyama, Y., Swaan, P. W., Ware, J. A., Wright, S. H., Yee, S. W., Zamek-Gliszczynski, M. J. and Zhang, L. 2010. Membrane transporters in drug development. Nat. Rev. Drug Discov. 9, 215-236. https://doi.org/10.1038/nrd3028
  5. Indumathy, S. and Dass, C. R. 2013. Finding chemo: The search for marine-based pharmaceutical drugs active against cancer. J. Pharm. Pharmacol. 65, 1280-1301. https://doi.org/10.1111/jphp.12097
  6. Ishida, S., Lee, J., Thiele, D. J. and Herskowitz, I. 2002. Uptake of the anticancer drug cisplatin mediated by the copper transporter ctr1 in yeast and mammals. Proc. Natl. Acad. Sci. USA 99, 14298-14302. https://doi.org/10.1073/pnas.162491399
  7. Johnson, K. R., Johnson, K. Y., Crellin, H. G., Ogretmen, B., Boylan, A. M., Harley, R. A. and Obeid, L. M. 2005. Immunohistochemical distribution of sphingosine kinase 1 in normal and tumor lung tissue. J. Histochem. Cytochem. 53, 1159-1166. https://doi.org/10.1369/jhc.4A6606.2005
  8. Katano, K., Kondo, A., Safaei, R., Holzer, A., Samimi, G., Mishima, M., Kuo, Y. M., Rochdi, M. and Howell, S. B. 2002. Acquisition of resistance to cisplatin is accompanied by changes in the cellular pharmacology of copper. Cancer Res. 62, 6559-6565.
  9. Kunkel, G. T., Maceyka, M., Milstien, S. and Spiegel, S. 2013. Targeting the sphingosine-1-phosphate axis in cancer, inflammation and beyond. Nat. Rev. Drug. Discov. 12, 688-702. https://doi.org/10.1038/nrd4099
  10. Kuroda, I., Musman, M., Ohtani, Ii, Ichiba, T., Tanaka, J., Gravalos, D. G. and Higa, T. 2002. Pachastrissamine, a cytotoxic anhydrophytosphingosine from a marine sponge, pachastrissa sp. J. Nat. Prod. 65, 1505-1506. https://doi.org/10.1021/np010659y
  11. Kuznetsov, G., Towle, M. J., Cheng, H., Kawamura, T., Tendyke, K., Liu, D., Kishi, Y., Yu, M. J. and Littlefield, B. A. 2004. Induction of morphological and biochemical apoptosis following prolonged mitotic blockage by halichondrin b macrocyclic ketone analog e7389. Cancer Res. 64, 5760-5766. https://doi.org/10.1158/0008-5472.CAN-04-1169
  12. Kwon, Y., Song, J., Bae, H., Kim, W. J., Lee, J. Y., Han, G. H., Lee, S. K. and Kim, S. 2015. Synthesis and biological evaluation of carbocyclic analogues of pachastrissamine. Mar. Drugs 13, 824-837. https://doi.org/10.3390/md13020824
  13. Lim, K. G., Gray, A. I., Pyne, S. and Pyne, N. J. 2012. Resveratrol dimers are novel sphingosine kinase 1 inhibitors and affect sphingosine kinase 1 expression and cancer cell growth and survival. Br. J. Pharmacol. 166, 1605-1616. https://doi.org/10.1111/j.1476-5381.2012.01862.x
  14. Lim, K. G., Tonelli, F., Li, Z., Lu, X., Bittman, R., Pyne, S. and Pyne, N. J. 2011. Fty720 analogues as sphingosine kinase 1 inhibitors: Enzyme inhibition kinetics, allosterism, proteasomal degradation, and actin rearrangement in mcf-7 breast cancer cells. J. Biol. Chem. 286, 18633-18640. https://doi.org/10.1074/jbc.M111.220756
  15. Maceyka, M., Payne, S. G., Milstien, S. and Spiegel, S. 2002. Sphingosine kinase, sphingosine-1-phosphate, and apoptosis. Biochim. Biophys. Acta. 1585, 193-201. https://doi.org/10.1016/S1388-1981(02)00341-4
  16. Mcgrath, T. and Center, M. S. 1988. Mechanisms of multidrug resistance in hl60 cells: Evidence that a surface membrane protein distinct from p-glycoprotein contributes to reduced cellular accumulation of drug. Cancer Res. 48, 3959-3963.
  17. Mease, K., Sane, R., Podila, L. and Taub, M. E. 2012. Differential selectivity of efflux transporter inhibitors in caco-2 and mdck-mdr1 monolayers: A strategy to assess the interaction of a new chemical entity with p-gp, bcrp, and mrp2. J. Pharm. Sci. 101, 1888-1897. https://doi.org/10.1002/jps.23069
  18. Pyne, S., Bittman, R. and Pyne, N. J. 2011. Sphingosine kinase inhibitors and cancer: Seeking the golden sword of hercules. Cancer Res. 71, 6576-6582. https://doi.org/10.1158/0008-5472.CAN-11-2364
  19. Russo, P., Nastrucci, C. and Cesario, A. 2011. From the sea to anticancer therapy. Curr. Med. Chem. 18, 3551-3562. https://doi.org/10.2174/092986711796642652
  20. Salma, Y., Lafont, E., Therville, N., Carpentier, S., Bonnafe, M. J., Levade, T., Genisson, Y. and Andrieu-Abadie, N. 2009. The natural marine anhydrophytosphingosine, jaspine b, induces apoptosis in melanoma cells by interfering with ceramide metabolism. Biochem. Pharmacol. 78, 477-485. https://doi.org/10.1016/j.bcp.2009.05.002
  21. Sato, H., Siddig, S., Uzu, M., Suzuki, S., Nomura, Y., Kashiba, T., Gushimiyagi, K., Sekine, Y., Uehara, T., Arano, Y., Yamaura, K. and Ueno, K. 2015. Elacridar enhances the cytotoxic effects of sunitinib and prevents multidrug resistance in renal carcinoma cells. Eur. J. Pharmacol. 746, 258-266. https://doi.org/10.1016/j.ejphar.2014.11.021
  22. Shida, D., Takabe, K., Kapitonov, D., Milstien, S. and Spiegel, S. 2008. Targeting sphk1 as a new strategy against cancer. Curr. Drug. Targets 9, 662-673. https://doi.org/10.2174/138945008785132402
  23. Sobue, S., Iwasaki, T., Sugisaki, C., Nagata, K., Kikuchi, R., Murakami, M., Takagi, A., Kojima, T., Banno, Y., Akao, Y., Nozawa, Y., Kannagi, R., Suzuki, M., Abe, A., Naoe, T. and Murate, T. 2006. Quantitative rt-pcr analysis of sphingolipid metabolic enzymes in acute leukemia and myelodysplastic syndromes. Leukemia 20, 2042-2046.
  24. Spiegel, S. and Milstien, S. 2003. Sphingosine-1-phosphate: An enigmatic signalling lipid. Nat. Rev. Mol. Cell. Biol. 4, 397-407. https://doi.org/10.1038/nrm1103
  25. Stoica, B. A., Movsesyan, V. A., Lea, P. M. T. and Faden, A. I. 2003. Ceramide-induced neuronal apoptosis is associated with dephosphorylation of akt, bad, fkhr, gsk-3beta, and induction of the mitochondrial-dependent intrinsic caspase pathway. Mol. Cell. Neurosci. 22, 365-382. https://doi.org/10.1016/S1044-7431(02)00028-3
  26. Yang, J. Y., Chang, C. J., Xia, W., Wang, Y., Wong, K. K., Engelman, J. A., Du, Y., Andreeff, M., Hortobagyi, G. N. and Hung, M. C. 2010. Activation of foxo3a is sufficient to reverse mitogen-activated protein/extracellular signal-regulated kinase kinase inhibitor chemoresistance in human cancer. Cancer Res. 70, 4709-4718. https://doi.org/10.1158/0008-5472.CAN-09-4524
  27. Yoo, H., Lee, Y. S., Lee, S., Kim, S. and Kim, T. Y. 2012. Pachastrissamine from pachastrissa sp. Inhibits melanoma cell growth by dual inhibition of cdk2 and erk-mediated foxo3 downregulation. Phytother. Res. 26, 1927-1933. https://doi.org/10.1002/ptr.4673
  28. Zhang, S., Lovejoy, K. S., Shima, J. E., Lagpacan, L. L., Shu, Y., Lapuk, A., Chen, Y., Komori, T., Gray, J. W., Chen, X., Lippard, S. J. and Giacomini, K. M. 2006. Organic cation transporters are determinants of oxaliplatin cytotoxicity. Cancer Res. 66, 8847-8857. https://doi.org/10.1158/0008-5472.CAN-06-0769

Cited by

  1. Pharmacokinetics of Jaspine B and Enhancement of Intestinal Absorption of Jaspine B in the Presence of Bile Acid in Rats vol.15, pp.9, 2017, https://doi.org/10.3390/md15090279