DOI QR코드

DOI QR Code

정상적인 인간유방상피세포인 MCF-12세포에서 유방암 항에스토젠 내성인자-3 (BCAR3)에 의한 c-Jun 발현 유도 연구

Induction of c-Jun Expression by Breast Cancer Anti-estrogen Resistance-3 (BCAR3) in Human Breast MCF-12A Cells

  • 오명주 (서울식품의약청 유해물질분석과) ;
  • 김지현 (부산대학교 나노과학기술대학) ;
  • 전병학 (부산대학교 나노과학기술대학)
  • Oh, Myung-Ju (Hazardous Substances Analysis Division, Seoul Regional Food and Drug Administraion, Ministry of Food and Drug Safety) ;
  • Kim, Ji-Hyun (College of Nanoscience and Nanotechnology, Pusan National University) ;
  • Jhun, Byung Hak (College of Nanoscience and Nanotechnology, Pusan National University)
  • 투고 : 2016.10.15
  • 심사 : 2016.11.28
  • 발행 : 2016.12.30

초록

타목시펜과 같은 항에스트로젠은 ER 양성의 초기 유방암 환자에게 사용되고 있다. 그러나 대부분의 환자에서 이 항에스트로젠에 대한 내성 발현은 불가피하게 발생한다. BCAR3 유전자는 사람의 에스트로젠 의존성 유방암에서 tamoxifen 내성유도를 야기하는 단백질로 발견되었다. 우리들은 이전에 이 BCAR3 유전자가 세포주기 진행과 EGF와 인슐린에 의한 DNA 합성 신호전달경로를 조절한다고 보고하였다. 본 연구에서는, 비종양성 정상적인 인간유방상피세포인 MCF-12A세포에서 c-Jun 전자의 조절에 대한 BCAR3유전자의 기능적인 역할을 조사하였다. BCAR3의 일시적인 발현 또는 지속적인 발현이 c-Jun mRNA와 단백질의 발현을 증가하는 것을 발견하였다. 또한 BCAR3 발현 유전자의 미세주사에 의해 세포 증식이 증가하였다. 이 c-Jun의 발현 증가는 promoter의 활성화를 통해 일어난다. 또한 BCAR3에 의한 c-Jun 발현 유도가 억제성 Ras, Rac, Rho에 의해 억제되었다. 다음으로 EGF 성장인자에 의한 c-Jun 발현 유도에 대한 BCAR3의 영향을 단일 세포 미세주사법에 의해 조사하였다. BCAR3 항체, BCAR3의 siRNA와 같은 BCAR3의 기능을 억제할 수 있는 물질들을 세포로 미세주사하면 EGF에 의한 c-Jun의 발현을 억제하였지만, IGF-1 성장인자에 의한 c-Jun 발현은 억제하지 않았다. 이러한 결과들로부터 BCAR3는 c-Jun 단백질 발현 유도와 세포 증식에 중요한 역할을 하며, 여기에는 Ras, Rac, Rho와 같은 GTPase들이 필요하다는 것을 발견하였다.

Anti-estrogen drugs such as tamoxifen have been used for treating patients with ER-positive, early breast cancer. However, resistance to anti-estrogen treatment is inevitable in most patients. Breast cancer anti-estrogen resistance-3 (BCAR3) has been identified as the protein responsible for the induction of tamoxifen resistance in estrogen-dependent human breast cancer. We have previously reported that BCAR3 regulates the cell cycle progression and the signaling pathway of EGF and insulin leading to DNA synthesis. In this study, we investigated the functional role of BCAR3 in regulating c-Jun transcription in non-tumorigenic human breast epithelial MCF-12A cells. A transient transfection of BCAR3 increased both the mRNA and protein of c-Jun expression, and stable expression of BCAR3 increased c-Jun protein expression. The overexpression of BCAR3 directly activated the promoter of c-jun, AP-1, and SRE but not that of $NF-{\kappa}B$. Furthermore, single-cell microinjection of BCAR3 expression plasmid in the cell cycle-arrested MCF-12A cells induced c-Jun protein expression, and co-injection of dominant negative mutants of Ras, Rac, and Rho suppressed the transcriptional activity of c-Jun in the presence of BCAR3. Furthermore, stable expression of BCAR3 increased the proliferation of MCF-12A cells. The microinjection of inhibitory materials such as anti-BCAR3 antibody and siRNA BCAR3 inhibited EGF-induced c-Jun expression but did not affect IGF-1 induced upregulation of c-Jun. Taken together, we propose that BCAR3 plays a crucial role in c-Jun protein expression and cell proliferation and that small GTPases (e.g., Ras, Rac, and Rho) are required for the BCAR3-mediated activation of c-Jun expression.

키워드

참고문헌

  1. Alani, R., Brown, P., Binetruy, B., Dosaka, H., Rosenberg, R. K., Angel, P., Karin, M. and Birrer, M. J. 1991. The transactivating domain of the c-Jun proto-oncoprotein is required for cotransformation of rat embryo cells. Mol. Cell. Biol. 11, 6286-6295. https://doi.org/10.1128/MCB.11.12.6286
  2. Babu, R. L., Naveen Kumar, M., Patil, R. H., Devaraju, K. S., Ramesh, G. T. and Sharma, S. C. 2013. Effect of estrogen and tamoxifen on the expression pattern of AP-1 factors in MCF-7 cells: role of c-Jun, c-Fos, and Fra-1 in cell cycle regulation. Mol. Cell. Biochem. 380, 143-151. https://doi.org/10.1007/s11010-013-1667-x
  3. Boyd, D. B. 2003. Insulin and cancer. Integr. Cancer Ther. 2, 315-329. https://doi.org/10.1177/1534735403259152
  4. Cai, D., Iyer, A., Felekkis, K. N., Near, R. I., Luo, Z., Chernoff, J., Albanese, C., Pestell, R. G. and Lerner, A. 2003. AND-34/BCAR3, a GDP exchange factor whose overexpression confers antiestrogen resistance, activates Rac, PAK1, and the cyclin D1 promoter. Cancer Res. 63, 6802-6808.
  5. Cross, A. M., Wilson, A. L., Guerrero, M. S., Thomas, K. S., Bachir, A. I., Kubow, K. E., Horwitz, A. R. and Bouton, A. H. 2016. Breast cancer antiestrogen resistance 3-p130Cas interactions promote adhesion disassembly and invasion in breast cancer cells. Oncogene advance online publication, 25 April 2016 (DOI:10.1038/onc.2016.123).
  6. Domann, F. E., Levy, J. P., Birrer, M. J. and Bowden, G. T. 1994. Stable expression of a c-JUN deletion mutant in two malignant mouse epidermal cell lines blocks tumor formation in nude mice. Cell Growth Differ. 5, 9-16.
  7. Early Breast Cancer Trialists' Collaborative 2011. Relevance of breast cancer hormone receptors and other factors to the efficacy of adjuvant tamoxifen: patient-level meta-analysis of randomised trials. Lancet 378, 771-784. https://doi.org/10.1016/S0140-6736(11)60993-8
  8. Felekkis, K. N., Narsimhan, R. P., Near, R., Castro, A. F., Zheng, Y., Quilliam, L. A. and Lerner, A. 2005. AND-34 activates phosphatidylinositol 3-kinase and induces anti-estrogen resistance in a SH2 and GDP exchange factor-like domain- dependent manner. Mol. Cancer Res. 3, 32-41.
  9. Gotoh, T., Cai, D., Tian, X., Feig, L. A. and Lerner, A. 2000. p130Cas regulates the activity of AND-34, a novel Ral, Rap1, and R-Ras guanine nucleotide exchange factor. J. Biol. Chem. 275, 30118-30123. https://doi.org/10.1074/jbc.M003074200
  10. Ibrahim, Y. H. and Yee, D. 2004. Insulin-like growth factor-I and cancer risk. Growth Horm. IGF Res. 14, 261-269. https://doi.org/10.1016/j.ghir.2004.01.005
  11. Johnson, R., Spiegelman, B., Hanahan, D. and Wisdom, R. 1996. Cellular transformation and malignancy induced by ras require c-jun. Mol. Cell. Biol. 16, 4504-4511. https://doi.org/10.1128/MCB.16.8.4504
  12. Lo, H. W., Hsu, S. C. and Hung, M. C. 2006. EGFR signaling pathway in breast cancers: from traditional signal transduction to direct nuclear translocalization. Breast Cancer Res. Treat. 95, 211-218. https://doi.org/10.1007/s10549-005-9011-0
  13. Mace, P. D., Wallez, Y., Dobaczewska, M. K., Lee, J. J., Robinson, H., Pasquale, E. B. and Riedl, S. J. 2011. NSP-Cas protein structures reveal a promiscuous interaction module in cell signaling. Nat. Struct. Mol. Biol. 18, 1381-1387. https://doi.org/10.1038/nsmb.2152
  14. Meng, Q. and Xia, Y. 2011. c-Jun, at the crossroad of the signaling network. Protein Cell 2, 889-898. https://doi.org/10.1007/s13238-011-1113-3
  15. Near, R. I., Zhang, Y., Makkinje, A., Vanden Borre, P. and Lerner, A. 2007. AND-34/BCAR3 differs from other NSP homologs in induction of anti-estrogen resistance, cyclin D1 promoter activation and altered breast cancer cell morphology. J. Cell. Physiol. 212, 655-665. https://doi.org/10.1002/jcp.21059
  16. Oh, M. J., van Agthoven, T., Choi, J. E., Jeong, Y. J., Chung, Y. H., Kim, C. M. and Jhun, B. H. 2008. BCAR3 regulates EGF-induced DNA synthesis in normal human breast MCF-12A cells. Biochem. Biophys. Res. Commun. 375, 430-434. https://doi.org/10.1016/j.bbrc.2008.08.040
  17. Oh, M. J., Yi, S. J., Kim, H. S., Kim, J. H., Jeong, Y. H., van Agthoven, T. and Jhun, B. H. 2013. Functional roles of BCAR3 in the signaling pathways of insulin leading to DNA synthesis, membrane ruffling and GLUT4 translocation. Biochem. Biophys. Res. Commun. 441, 911-916. https://doi.org/10.1016/j.bbrc.2013.10.161
  18. Pietras, R. J. 2003. Interactions between estrogen and growth factor receptors in human breast cancers and the tumor- associated vasculature. Breast J. 9, 361-373. https://doi.org/10.1046/j.1524-4741.2003.09510.x
  19. Schiff, R., Reddy, P., Ahotupa, M., Coronado-Heinsohn, E., Grim, M., Hilsenbeck, S. G., Lawrence, R., Deneke, S., Herrera, R., Chamness, G. C., Fuqua, S. A., Brown, P. H. and Osborne, C. K. 2000. Oxidative stress and AP-1 activity in tamoxifen-resistant breast tumors in vivo. J. Natl. Cancer Inst. 92, 1926-1934. https://doi.org/10.1093/jnci/92.23.1926
  20. Schrecengost, R. S., Riggins, R. B., Thomas, K. S., Guerrero, M. S. and Bouton, A. H. 2007. Breast cancer antiestrogen resistance-3 expression regulates breast cancer cell migration through promotion of p130Cas membrane localization and membrane ruffling. Cancer Res. 67, 6174-6182. https://doi.org/10.1158/0008-5472.CAN-06-3455
  21. Shaulian, E. and Karin, M. 2002. AP-1 as a regulator of cell life and death. Nat. Cell Biol. 4, E131-136. https://doi.org/10.1038/ncb0502-e131
  22. Smith, L. M., Wise, S. C., Hendricks, D. T., Sabichi, A. L., Bos, T., Reddy, P., Brown, P. H. and Birrer, M. J. 1999. cJun overexpression in MCF-7 breast cancer cells produces a tumorigenic, invasive and hormone resistant phenotype. Oncogene 18, 6063-6070. https://doi.org/10.1038/sj.onc.1202989
  23. van Agthoven, T., Godinho, M. F., Wulfkuhle, J. D., Petricoin 3rd, E. F. and Dorssers, L. C. 2012. Protein pathway activation mapping reveals molecular networks associated with antiestrogen resistance in breast cancer cell lines. Int. J. Cancer 131, 1998-2007. https://doi.org/10.1002/ijc.27489
  24. van Agthoven, T., van Agthoven, T. L., Dekker, A., van der Spek, P. J., Vreede, L. and Dorssers, L. C. 1998. Identification of BCAR3 by a random search for genes involved in antiestrogen resistance of human breast cancer cells. EMBO J. 17, 2799-2808. https://doi.org/10.1093/emboj/17.10.2799
  25. Vleugel, M. M., Greijer, A. E., Bos, R., van der Wall, E. and van Diest, P. J. 2006. c-Jun activation is associated with proliferation and angiogenesis in invasive breast cancer. Hum. Pathol. 37, 668-674. https://doi.org/10.1016/j.humpath.2006.01.022
  26. Wallez, Y., Riedl, S. J. and Pasquale, E. B. 2014. Association of the breast cancer antiestrogen resistance protein 1 (BCAR1) and BCAR3 scaffolding proteins in cell signaling and antiestrogen resistance. J. Biol. Chem. 289, 10431-10444. https://doi.org/10.1074/jbc.M113.541839
  27. Wilson, A. L., Schrecengost, R. S., Guerrero, M. S., Thomas, K. S. and Bouton, A. H. 2013. Breast cancer antiestrogen resistance 3 (BCAR3) promotes cell motility by regulating actin cytoskeletal and adhesion remodeling in invasive breast cancer cells. PLoS ONE 8, e65678. https://doi.org/10.1371/journal.pone.0065678
  28. Xu, Y., Zou, S. T., Zhu, R., Li, W., Gu, C. W., Wei, S. H., Xie, J. M. and Wu, H. R. 2013. Inhibition of proliferation of estrogen receptor positive MCF7 human breast cancer cells by tamoxifen through cJun transcription factors. Mol Med. Rep. 7, 1283-1287. https://doi.org/10.3892/mmr.2013.1306
  29. Zhang, Y., Pu, X., Shi, M., Chen, L., Song, Y., Qian, L., Yuan, G., Zhang, H., Yu, M., Hu, M., Shen, B. and Guo, N. 2007. Critical role of c-Jun overexpression in liver metastasis of human breast cancer xenograft model. BMC Cancer 7, 145. https://doi.org/10.1186/1471-2407-7-145
  30. Zhao, C., Qiao, Y., Jonsson, P., Wang, J., Xu, L., Rouhi, P., Sinha, I., Cao, Y., Williams, C. and Dahlman-Wright, K. 2014. Genome-wide profiling of AP-1-regulated transcription provides insights into the invasiveness of triple-negative breast cancer. Cancer Res. 74, 3983-3994. https://doi.org/10.1158/0008-5472.CAN-13-3396