DOI QR코드

DOI QR Code

Cilostazol Promotes the Migration of Brain Microvascular Endothelial Cells

Cilostazol에 의한 뇌혈관내피세포의 세포이동 증진 효과연구

  • Lee, Sae-Won (Korean Medical Science Research Center for Healthy-Aging, Pusan National University) ;
  • Park, Jung Hwa (Korean Medical Science Research Center for Healthy-Aging, Pusan National University) ;
  • Shin, Hwa Kyoung (Korean Medical Science Research Center for Healthy-Aging, Pusan National University)
  • 이세원 (부산대학교 건강노화 한의과학 연구센터) ;
  • 박정화 (부산대학교 건강노화 한의과학 연구센터) ;
  • 신화경 (부산대학교 건강노화 한의과학 연구센터)
  • Received : 2016.09.01
  • Accepted : 2016.11.03
  • Published : 2016.12.30

Abstract

Cilostazol is known to be a selective inhibitor of phosphodiesterase III and is generally used to treat stroke. Our previous findings showed that cilostazol enhanced capillary density through angiogenesis after focal cerebral ischemia. Angiogenesis is an important physiological process for promoting revascularization to overcome tissue ischemia. It is a multistep process consisting of endothelial cell proliferation, migration, and tubular structure formation. Here, we examined the modulatory effect of cilostazol at each step of the angiogenic mechanism by using human brain microvascular endothelial cells (HBMECs). We found that cilostazol increased the migration of HBMECs in a dose-dependent manner. However, it did not enhance HBMEC proliferation and capillary-like tube formation. We used a cDNA microarray to analyze the mechanisms of cilostazol in cell migration. We picked five candidate genes that were potentially related to cell migration, and we confirmed the gene expression levels by real-time PCR. The genes phosphoserine aminotransferase 1 (PSAT1) and CCAAT/enhancer binding protein ${\beta}$ ($C/EBP{\beta}$) were up-regulated. The genes tissue factor pathway inhibitor 2 (TFPI2), retinoic acid receptor responder 1 (RARRES1), and RARRES3 were down-regulated. Our observations suggest that cilostazol can promote angiogenesis by promoting endothelial migration. Understanding the cilostazol-modulated regulatory mechanisms in brain endothelial cells may help stimulate blood vessel formation for the treatment of ischemic diseases.

Cilostazol은 phosphodiesterase III의 선택적 저해제로 알려져 있으며, 뇌졸중 치료에 일반적으로 사용되고 있다. Cilostazol을 처리한 경우, 국소 뇌허혈이 발생한 후에 혈관신생을 통해서 혈관형성이 향상된다는 것을 본 연구자들이 발표하였다. 혈관신생은 조직의 허혈상태를 극복하기 위해서 혈관재생을 촉진하는 중요한 과정으로써, 혈관내피세포의 증식, 이동, 모세관구조 형성의 다단계 과정으로 구성되어 있다. 이에 본 연구에서는 인간 뇌혈관내피세포를 이용하여 cilostazol이 혈관신생의 각 단계들에 어떤 영향을 미치는지 조사하였다. Cilostazol은 농도의존적으로 뇌혈관내피세포의 이동성을 촉진하였으나, 뇌혈관내피세포의 증식과 모세관구조 형성에는 영향을 미치지 않았다. Cilostazol이 세포이동을 조절하는 기전을 분석하기 위해서 cDNA microarray를 수행하였고, 세포이동에 관련성이 있는 5종의 후보 유전자들을 선택하여 real-time PCR을 통해 해당 유전자의 발현을 검증하였다. Cilostazol에 의해서 발현양이 조절되는 유전자들로써, phosphoserine aminotransferase 1 (PSAT1)와 CCAAT/enhancer binding protein ${\beta}$ ($C/EBP{\beta}$)은 발현이 증가하였고, tissue factor pathway inhibitor 2 (TFPI2), retinoic acid receptor responder 1 (RARRES1), RARRES3는 발현이 감소하였다. 이상의 결과를 통해서 cilostazol이 혈관내피세포의 이동을 촉진하여 혈관신생을 향상시킬 수 있음을 제안할 수 있으며, 뇌혈관내피세포에 대한 cilostazol의 조절기전에 대해서 더욱 상세히 규명을 한다면 혈관형성을 통하여 허혈성 질환을 치료할 수 있는 유용한 정보가 될 것으로 기대한다.

Keywords

References

  1. Betz, C., Lenard, A., Belting, H. G. and Affolter, M. 2016. Cell behaviors and dynamics during angiogenesis. Development 143, 2249-2260. https://doi.org/10.1242/dev.135616
  2. Biscetti, F., Straface, G., Arena, V., Stigliano, E., Pecorini, G., Rizzo, P., De Angelis, G., Iuliano, L., Ghirlanda, G. and Flex, A. 2009. Pioglitazone enhances collateral blood flow in ischemic hindlimb of diabetic mice through an Akt-dependent VEGF-mediated mechanism, regardless of PPARgamma stimulation. Cardiovasc. Diabetol. 8, 49. https://doi.org/10.1186/1475-2840-8-49
  3. Damm, S., Koefinger, P., Stefan, M., Wels, C., Mehes, G., Richtig, E., Kerl, H., Otte, M. and Schaider, H. 2010. HGFpromoted motility in primary human melanocytes depends on CD44v6 regulated via NF-kappa B, Egr-1, and C/EBPbeta. J. Invest. Dermatol. 130, 1893-1903. https://doi.org/10.1038/jid.2010.45
  4. Dimmeler, S. and Zeiher, A. M. 2000. Endothelial cell apoptosis in angiogenesis and vessel regression. Circ. Res. 87, 434-439. https://doi.org/10.1161/01.RES.87.6.434
  5. Folkman, J. 1995. Seminars in Medicine of the Beth Israel Hospital, Boston. Clinical applications of research on angiogenesis. N. Engl. J. Med. 333, 1757-1763. https://doi.org/10.1056/NEJM199512283332608
  6. Gandin, C., Widmann, C., Lazdunski, M. and Heurteaux, C. 2016. MLC901 favors angiogenesis and associated recovery after ischemic stroke in mice. Cerebrovasc. Dis. 42, 139-154. https://doi.org/10.1159/000444810
  7. Gessler, F., Voss, V., Seifert, V., Gerlach, R. and Kogel, D. 2011. Knockdown of TFPI-2 promotes migration and invasion of glioma cells. Neurosci. Lett. 497, 49-54. https://doi.org/10.1016/j.neulet.2011.04.027
  8. Hart, C. E., Race, V., Achouri, Y., Wiame, E., Sharrard, M., Olpin, S. E., Watkinson, J., Bonham, J. R., Jaeken, J., Matthijs, G. and Van Schaftingen, E. 2007. Phosphoserine aminotransferase deficiency: a novel disorder of the serine biosynthesis pathway. Am. J. Hum. Genet. 80, 931-937. https://doi.org/10.1086/517888
  9. Hashimoto, A., Miyakoda, G., Hirose, Y. and Mori, T. 2006. Activation of endothelial nitric oxide synthase by cilostazol via a cAMP/protein kinase A- and phosphatidylinositol 3-kinase/Akt-dependent mechanism. Atherosclerosis 189, 350-357. https://doi.org/10.1016/j.atherosclerosis.2006.01.022
  10. Hermes Tde, A., Macedo, A. B., Fogaca, A. R., Moraes, L. H., de Faria, F. M., Kido, L. A., Cagnon, V. H. and Minatel, E. 2016. Beneficial cilostazol therapeutic effects in mdx dystrophic skeletal muscle. Clin. Exp. Pharmacol. Physiol. 43, 259-267. https://doi.org/10.1111/1440-1681.12521
  11. Kamihata, H., Matsubara, H., Nishiue, T., Fujiyama, S., Tsutsumi, Y., Ozono, R., Masaki, H., Mori, Y., Iba, O., Tateishi, E., Kosaki, A., Shintani, S., Murohara, T., Imaizumi, T. and Iwasaka, T. 2001. Implantation of bone marrow mononuclear cells into ischemic myocardium enhances collateral perfusion and regional function via side supply of angioblasts, angiogenic ligands, and cytokines. Circulation 104, 1046-1052. https://doi.org/10.1161/hc3501.093817
  12. Lala-Tabbert, N., Fu, D. and Wiper-Bergeron, N. 2016. Induction of CCAAT/enhancer-binding protein beta expression with the phosphodiesterase inhibitor isobutylmethylxanthine improves myoblast engraftment into dystrophic muscle. Stem Cells Transl. Med. 5, 500-510. https://doi.org/10.5966/sctm.2015-0169
  13. Lamouille, S., Xu, J. and Derynck, R. 2014. Molecular mechanisms of epithelial-mesenchymal transition. Nat. Rev. Mol. Cell Biol. 15, 178-196. https://doi.org/10.1038/nrm3758
  14. Lee, D. H., Lee, H. R., Shin, H. K., Park, S. Y., Hong, K. W., Kim, E. K., Bae, S. S., Lee, W. S., Rhim, B. Y. and Kim, C. D. 2011. Cilostazol enhances integrin-dependent homing of progenitor cells by activation of cAMP-dependent protein kinase in synergy with Epac1. J. Neurosci. Res. 89, 650-660. https://doi.org/10.1002/jnr.22558
  15. Lee, J. H., Park, S. Y., Shin, H. K., Kim, C. D., Lee, W. S. and Hong, K. W. 2008. Protective effects of cilostazol against transient focal cerebral ischemia and chronic cerebral hypoperfusion injury. CNS Neurosci. Ther. 14, 143-152. https://doi.org/10.1111/j.1527-3458.2008.00042.x
  16. Lee, S. W., Jung, K. H., Jeong, C. H., Seo, J. H., Yoon, D. K., Suh, J. K., Kim, K. W. and Kim, W. J. 2011. Inhibition of endothelial cell migration through the downregulation of MMP-9 by A-kinase anchoring protein 12. Mol. Med. Rep. 4, 145-149.
  17. Lee, S. W., Won, J. Y., Kim, W. J., Lee, J., Kim, K. H., Youn, S. W., Kim, J. Y., Lee, E. J., Kim, Y. J., Kim, K. W. and Kim, H. S. 2013. Snail as a potential target molecule in cardiac fibrosis: paracrine action of endothelial cells on fibroblasts through snail and CTGF axis. Mol. Ther. 21, 1767-1777. https://doi.org/10.1038/mt.2013.146
  18. Lee, W. J., Lan, K. H., Chou, C. T., Yi, Y. C., Chen, W. C., Pan, H. C., Peng, Y. C., Wang, K. B., Chen, Y. C., Chao, T. H., Tien, H. R., Sheu, W. H. and Sheu, M. L. 2013. Tpl2 inhibitors thwart endothelial cell function in angiogenesis and peritoneal dissemination. Neoplasia 15, 1036-1048. https://doi.org/10.1593/neo.121914
  19. Liu, B., Jia, Y., Cao, Y., Wu, S., Jiang, H., Sun, X., Ma, J., Yin, X., Mao, A. and Shang, M. 2016. Overexpression of Phosphoserine Aminotransferase 1 (PSAT1) predicts poor prognosis and associates with tumor progression in human esophageal squamous cell carcinoma. Cell Physiol. Biochem. 39, 395-406. https://doi.org/10.1159/000445633
  20. Logue, O. C., McGowan, J. W., George, E. M. and Bidwell, G. L. 3rd. 2016. Therapeutic angiogenesis by vascular endothelial growth factor supplementation for treatment of renal disease. Curr. Opin. Nephrol. Hypertens. 25, 404-409. https://doi.org/10.1097/MNH.0000000000000256
  21. Morales, M., Arenas, E. J., Urosevic, J., Guiu, M., Fernandez, E., Planet, E., Fenwick, R. B., Fernandez-Ruiz, S., Salvatella, X., Reverter, D., Carracedo, A., Massague, J. and Gomis, R. R. 2014. RARRES3 suppresses breast cancer lung metastasis by regulating adhesion and differentiation. EMBO Mol. Med. 6, 865-881. https://doi.org/10.15252/emmm.201303675
  22. Nagpal, S., Patel, S., Asano, A. T., Johnson, A. T., Duvic, M. and Chandraratna, R. A. 1996. Tazarotene-induced gene 1 (TIG1), a novel retinoic acid receptor-responsive gene in skin. J. Invest. Dermatol. 106, 269-274. https://doi.org/10.1111/1523-1747.ep12340668
  23. Oldridge, E. E., Walker, H. F., Stower, M. J., Simms, M. S., Mann, V. M., Collins, A. T., Pellacani, D. and Maitland, N. J. 2013. Retinoic acid represses invasion and stem cell phenotype by induction of the metastasis suppressors RARRES1 and LXN. Oncogenesis 2, e45. https://doi.org/10.1038/oncsis.2013.6
  24. Omote, Y., Deguchi, K., Kono, S., Liu, N., Liu, W., Kurata, T., Yamashita, T., Ikeda, Y. and Abe, K. 2014. Neurovascular protection of cilostazol in stroke-prone spontaneous hypertensive rats associated with angiogenesis and pericyte proliferation. J. Neurosci. Res. 92, 369-374. https://doi.org/10.1002/jnr.23327
  25. Pan, J., Ma, D., Sun, F., Liang, W., Liu, R., Shen, W., Wang, H., Ji, Y., Hu, R., Liu, R., Luo, X. and Shi, H. 2013. Over-expression of TFPI-2 promotes atherosclerotic plaque stability by inhibiting MMPs in apoE-/- mice. Int. J. Cardiol. 168, 1691-1697. https://doi.org/10.1016/j.ijcard.2013.03.073
  26. Park, W. S., Jung, W. K., Lee, D. Y., Moon, C., Yea, S. S., Park, S. G., Seo, S. K., Park, C., Choi, Y. H., Kim, G. Y., Choi, J. S. and Choi, I. W. 2010. Cilostazol protects mice against endotoxin shock and attenuates LPS-induced cytokine expression in RAW 264.7 macrophages via MAPK inhibition and NF-kappaB inactivation: not involved in cAMP mechanisms. Int. Immunopharmacol. 10, 1077-1085. https://doi.org/10.1016/j.intimp.2010.06.008
  27. Pollari, S., Kakonen, S. M., Edgren, H., Wolf, M., Kohonen, P., Sara, H., Guise, T., Nees, M. and Kallioniemi, O. 2011. Enhanced serine production by bone metastatic breast cancer cells stimulates osteoclastogenesis. Breast Cancer Res. Treat. 125, 421-430. https://doi.org/10.1007/s10549-010-0848-5
  28. Sahab, Z. J., Hall, M. D., Zhang, L., Cheema, A. K. and Byers, S. W. 2010. Tumor suppressor RARRES1 regulates DLG2, PP2A, VCP, EB1, and Ankrd26. J. Cancer 1, 14-22.
  29. Sanada, F., Kanbara, Y., Taniyama, Y., Otsu, R., Carracedo, M., Ikeda-Iwabu, Y., Muratsu, J., Sugimoto, K., Yamamoto, K., Rakugi, H. and Morishita, R. 2016. Induction of angiogenesis by a type III phosphodiesterase inhibitor, cilostazol, through activation of peroxisome proliferator-activated receptor- gamma and cAMP pathways in vascular cells. Arterioscler. Thromb. Vasc. Biol. 36, 545-552. https://doi.org/10.1161/ATVBAHA.115.307011
  30. Shin, H. K., Lee, H. R., Lee, D. H., Hong, K. W., Lee, J. H., Park, S. Y., Lee, S. J., Lee, J. S., Lee, W. S., Rhim, B. Y. and Kim, C. D. 2010. Cilostazol enhances neovascularization in the mouse hippocampus after transient forebrain ischemia. J. Neurosci. Res. 88, 2228-2238. https://doi.org/10.1002/jnr.22376
  31. Vanhollebeke, B., Stone, O. A., Bostaille, N., Cho, C., Zhou, Y., Maquet, E., Gauquier, A., Cabochette, P., Fukuhara, S., Mochizuki, N., Nathans, J. and Stainier, D. Y. 2015. Tip cellspecific requirement for an atypical Gpr124- and Reck-dependent Wnt/beta-catenin pathway during brain angiogenesis. Elife 4, e06489.
  32. Wang, Z., Wang, L., Hu, J., Fan, R., Zhou, J., Wang, L. and Zhong, J. 2015. RARRES3 suppressed metastasis through suppression of MTDH to regulate epithelial-mesenchymal transition in colorectal cancer. Am. J. Cancer Res. 5, 1988-1999.
  33. Wiley, D. M., Kim, J. D., Hao, J., Hong, C. C., Bautch, V. L. and Jin, S. W. 2011. Distinct signalling pathways regulate sprouting angiogenesis from the dorsal aorta and the axial vein. Nat. Cell Biol. 13, 686-692. https://doi.org/10.1038/ncb2232
  34. Yan, S., Jiang, H., Fang, S., Yin, F., Wang, Z., Jia, Y., Sun, X., Wu, S., Jiang, T. and Mao, A. 2015. MicroRNA-340 Inhibits esophageal cancer cell growth and invasion by targeting phosphoserine aminotransferase 1. Cell Physiol. Biochem. 37, 375-386. https://doi.org/10.1159/000430361
  35. Youn, S. W., Lee, S. W., Lee, J., Jeong, H. K., Suh, J. W., Yoon, C. H., Kang, H. J., Kim, H. Z., Koh, G. Y., Oh, B. H., Park, Y. B. and Kim, H. S. 2011. COMP-Ang1 stimulates HIF-1alpha-mediated SDF-1 overexpression and recovers ischemic injury through BM-derived progenitor cell recruitment. Blood 117, 4376-4386. https://doi.org/10.1182/blood-2010-07-295964
  36. Yu, J., Xiao, F., Guo, Y., Deng, J., Liu, B., Zhang, Q., Li, K., Wang, C., Chen, S. and Guo, F. 2015. Hepatic phosphoserine aminotransferase 1 regulates insulin sensitivity in mice via tribbles homolog 3. Diabetes 64, 1591-1602. https://doi.org/10.2337/db14-1368
  37. Zhai, L. L., Wu, Y., Huang, D. W. and Tang, Z. G. 2015. Increased matrix metalloproteinase-2 expression and reduced tissue factor pathway inhibitor-2 expression correlate with angiogenesis and early postoperative recurrence of pancreatic carcinoma. Am. J. Transl. Res. 7, 2412-2422.
  38. Zhou, Q., Xiong, Y., Chen, Y., Du, Y., Zhang, J., Mu, J., Guo, Q., Wang, H., Ma, D. and Li, X. 2012. Effects of tissue factor pathway inhibitor-2 expression on biological behavior of BeWo and JEG-3 cell lines. Clin. Appl. Thromb. Hemost. 18, 526-533. https://doi.org/10.1177/1076029611429785