참고문헌
- Abravaya, K., Phillips, B. and Morimoto, R. I. 1991. Attenuation of the heat shock response in HeLa cells is mediated by the release of bound heat shock transcription factor and is modulated by changes in growth and in heat shock temperatures. Genes Dev. 5, 2117-2127. https://doi.org/10.1101/gad.5.11.2117
- Ahn, S. G., Liu, P. C., Klyachko, K., Morimoto, R. I. and Thiele, D. J. 2001. The loop domain of heat shock transcription factor 1 dictates DNA-binding specificity and responses to heat stress. Genes Dev. 15, 2134-2145. https://doi.org/10.1101/gad.894801
- Anckar, J. and Sistonen, L. 2007. Heat shock factor 1 as a coordinator of stress and developmental pathways. Adv. Exp. Med. Biol. 594, 78-88. https://doi.org/10.1007/978-0-387-39975-1_8
- Chang, Z., Lu, M., Kim, S. S. and Park, J. S. 2014. Potential role of HSP90 in mediating the interactions between estrogen receptor (ER) and aryl hydrocarbon receptor (AhR) signaling pathways. Toxicol. Lett. 226, 6-13. https://doi.org/10.1016/j.toxlet.2014.01.032
- Dietz, K. J. and Scheibe, R. 2004. Redox regulation, an introduction. Physiol. Plant. 120, 1-3. https://doi.org/10.1111/j.0031-9317.2004.0277.x
- Dai, C., Whitesell, L., Rogers, A. B. and Lindquist, S. 2007. Heat shock factor 1 is a powerful multifaceted modifier of carcinogenesis. Cell 130, 1005-1018. https://doi.org/10.1016/j.cell.2007.07.020
- Farkas, T., Kutskova, Y. A. and Zimarino, V. 1998 Intramolecular repression of mouse heat shock factor 1. Mol. Cell. Biol. 18, 906-918. https://doi.org/10.1128/MCB.18.2.906
- George, K., Iwama, Philip, T., Thomas, Robert, B., Forsyth, Mathilakath, M. and Vijayan. 1998. Heat shock protein expression in fish. Reviews in Fish Biology and Fisheries 8, 35-56. https://doi.org/10.1023/A:1008812500650
- Hahn, J. S., Hu, Z., Thiele, D. J. and Iyer, V. R. 2004. Genome-wide analysis of the biology of stress responses through heat shock transcription factor. Mol. Cell. Biol. 24, 5249-5256. https://doi.org/10.1128/MCB.24.12.5249-5256.2004
- Hsu, A. L., Murphy, C. T. and Kenyon, C. 2003. Regulation of aging and age-related disease by DAF-16 and heat-shock factor. Science 300, 1142-1145 https://doi.org/10.1126/science.1083701
- Iavicoli, I., Fontana, L. and Bergamaschi, A. 2009. The effects of metals as endocrine disruptors J. Toxicol. Environ. Health B Crit. Rev. 12, 206-223. https://doi.org/10.1080/10937400902902062
- Kim, S. S., Chang, Z. and Park, J. S. 2015. Identification, tissue distribution and characterization of two heat shock factors (HSFs) in goldfish (Carassius auratus). Fish Shellfish Immunol. 43, 375-386. https://doi.org/10.1016/j.fsi.2015.01.004
- Li, C .R., Lee, S. H., Kim, S. S., Kim, A., Lee, K. W., Lu, M., Kim, H. E., Kwak, I. J., Lee, Y. J., Lim, D. K. Lee, J. S., Kang, S. W., Huh, M. D., Chung, K. H. and Park, J. S. 2009. Environmental estrogenic effects and gonadal development in wild goldfish (Carassius auratus). Environ. Monit. Assess. 150, 397-404. https://doi.org/10.1007/s10661-008-0238-1
- Lu, M., Kim, H. E., Li, C. R., Kim, S., Kwak, I. J., Lee, Y. J., Kim, S. S. and Park, J. S. 2008. Two distinct disulfide bonds formed in human heat shock transcription factor 1Act in opposition to regulate its DNA binding activity. Biochemistry 47, 6007-6015. https://doi.org/10.1021/bi702185u
- Lu, M., Lee, Y. J., Park, S. M., Kang, H. S., Kang, S. W., Kim, S. and Park, J. S. 2009. Aromatic-participant interactions are essential for disulfide-bond-based trimerization in human heat shock transcription factor 1. Biochemistry 48, 3795-3797. https://doi.org/10.1021/bi802255c
- Mathew, A., Mathur, S. K., Jolly, C., Fox, S. G., Kim, S. and Morimoto, R. I. 2001. Stress-specific activation and repression of heat shock factors 1 and 2. Mol. Cell. Biol. 21, 7163-7171. https://doi.org/10.1128/MCB.21.21.7163-7171.2001
- McMillan, D. R., Xiao, X., Shao, L., Graves, K. and Benjamin, I. J. 1998. Targeted disruption of heat shock transcription factor 1 abolishes thermotolerance and protection against heat-inducible apoptosis. J. Biol. Chem. 273, 7523-7528 https://doi.org/10.1074/jbc.273.13.7523
- Mendillo, M. L., Santagata, S., Koeva, M., Bell, G. W., Hu, R., Tamimi, R. M., Fraenkel, E., Ince, T. A., Whitesell, L. and Lindquist, S. 2012. HSF1 drives a transcriptional program distinct from heat shock to support highly malignant human cancers. Cell 150, 549-562. https://doi.org/10.1016/j.cell.2012.06.031
- Morley, J. F. and Morimoto, R. I. 2004. Regulation of longevity in Caenorhabditis elegans by heat shock factor and molecular chaperones. Mol. Biol. Cell 15, 657-664. https://doi.org/10.1091/mbc.e03-07-0532
- Morimoto, R. I., Tissieres, A. and Georgopoulos, C. 1994. The Biology of Heat Shock Proteins and Molecular Chaperones. Cold Spring Harbor Laboratory Press. NY, USA.
- Morimoto, R. I. 1998. Regulation of the heat shock transcriptional response: cross talk between a family of heat shock factors, molecular chaperones, and negative regulators. Genes Dev. 12, 3788-3796. https://doi.org/10.1101/gad.12.24.3788
- Nakai, A. and Morimoto, R. I. 1993. Characterization of a novel chicken heat shock transcription factor, heat shock factor 3, suggests a new regulatory pathway. Mol. Cell. Biol. 13, 1983-1997. https://doi.org/10.1128/MCB.13.4.1983
- Nakai, A., Tanabe, M., Kawazoe, Y., Inazawa, J., Morimoto, R. I. and Nagata, K. 1997. HSF4, a new member of the human heat shock factor family which lacks properties of a transcriptional activator. Mol. Cell. Biol. 17, 469. https://doi.org/10.1128/MCB.17.1.469
- Pirkkala, L., Alastalo, T. P., Zuo, X., Benjamin, I. J. and Sistonen, L. 2000. Disruption of heat shock factor 1 reveals an essential role in the ubiquitin proteolytic pathway. Mol. Cell. Biol. 20, 2670-2675. https://doi.org/10.1128/MCB.20.8.2670-2675.2000
- Rabindran, S. K., Giorgi, G., Clos, J. and Wu, C. 1991. Molecular cloning and expression of a human heat shock factor, HSF1. Proc. Natl. Acad. Sci. USA 88, 6906-6910. https://doi.org/10.1073/pnas.88.16.6906
- Rabindran, S. K., Haroun, R. I., Clos, J., Wisniewski, J. and Wu, C. 1993. Regulation of heat shock factor trimer formation: Role of a conserved leucine zipper. Science 259, 230-234. https://doi.org/10.1126/science.8421783
- Sarge, K. D., Murphy, S. P. and Morimoto, R. I. 1993. Activation of heat shock gene transcription by heat shock factor 1 involves oligomerization, acquisition of DNA-binding activity, and nuclear localization and can occur in the absence of stress. Mol. Cell. Biol. 3, 1392-1407.
- Sarge, K. D., Zimarino, V., Holm, K., Wu, C. and Morimoto, R. I. 1991. Cloning and characterization of two mouse heat shock factors with distinct inducible and constitutive DNA-binding ability. Genes Dev. 5, 1902-1911. https://doi.org/10.1101/gad.5.10.1902
- Schuetz, T. J., Gallo, G. J., Sheldon, L., Tempst, P. and Kingston, R. E. 1991. Isolation of a cDNA for HSF2: evidence for two heat shock factor genes in humans. Proc. Natl. Acad. Sci. USA 88, 6911-6915. https://doi.org/10.1073/pnas.88.16.6911
- Sun, Y. and Oberley, L. W. 1996. Redox regulation of transcriptional activators. Free Radic. Biol. Med. 21, 335-348. https://doi.org/10.1016/0891-5849(96)00109-8
- Trinklein, N. D., Murray, J. I., Hartman, S. J., Botstein, D. and Myers, R. M. 2004. The role of heat shock transcription factor 1 in the genome-wide regulation of the mammalian heat shock response. Mol. Biol. Cell. 15, 1254-1261. https://doi.org/10.1091/mbc.e03-10-0738
- Vihervaara, A., Sergelius, C., Vasara, J., Blom, M. A. H., Elsing, A. N., Roos-Mattjus, P. and Sistonen, L. 2013. Transcriptional response to stress in the dynamic chromatin environment of cycling and mitotic cells. Proc. Natl. Acad. Sci. USA 110, 3388-3397. https://doi.org/10.1073/pnas.1305275110
- Voellmy, R. 2004. On mechanisms that control heat shock transcription factor activity in metazoan cells. Cell Stress Chaperones 9, 122-133. https://doi.org/10.1379/CSC-14R.1
- Wu, B. J., Kingston, R. E. and Morimoto, R. I. 1986. Human HSP70 promoter contains at least two distinct regulatory domains. Proc. Natl. Acad. Sci. USA 83, 629-633. https://doi.org/10.1073/pnas.83.3.629
- Xiao, X., Zuo, X., Davis, A. A., McMillan, D. R., Curry, B. B., Richardson, J. A. and Benjamin, I. J. 1999. HSF1 is required for extra-embryonic development, postnatal growth and protection during inflammatory responses in mice. EMBO J. 18, 5943-5952 https://doi.org/10.1093/emboj/18.21.5943
- Yamashita, M., Hirayoshi, K. and Nagata, K. 2004. Characte rization of multiple members of the HSP70 family in platyfish culture cells: molecular evolution of stress protein HSP70 in vertebrates. Gene 336, 207-218. https://doi.org/10.1016/j.gene.2004.04.023
- Zuo, J., Baler, R., Dahl, G. and Voellmy, R. 1994. Activation of the DNA-binding ability of human heat shock transcription factor 1 may involve the transition from an intramolecular to an intermolecular triple-stranded coiled-coil structure. Mol. Cell. Biol. 14, 7557-7568. https://doi.org/10.1128/MCB.14.11.7557