DOI QR코드

DOI QR Code

인간 골수유래-중간엽 줄기세포(hBM-MSCs)에서 PDE4 억제조절을 통한 신경세포 분화 효율 개선

Improvement of Neuronal Differentiation by PDE4 Inhibition in Human Bone Marrow-mesenchymal Stem Cells

  • Jeong, Da Hee (Department of Biology, College of Natural Science, Chosun University) ;
  • Joe, I-Seul (Department of Biology, College of Natural Science, Chosun University) ;
  • Cho, Goang-Won (Department of Biology, College of Natural Science, Chosun University)
  • 투고 : 2016.05.02
  • 심사 : 2016.09.05
  • 발행 : 2016.12.30

초록

인간 중간엽 줄기세포(hMSCs)는 신경세포(neuron-like cells)를 포함한 다양한 세포로 분화할 수 있는 능력을 지닌 성체 줄기세포(adult stem cells)이다. 본 연구에서는 인간의 골수유래-중간엽 줄기세포(bone marrow-mesenchymal stem cells; hBM-MSCs)를 이용한 신경분화에서 신경세포 표지자(neuronal marker)인 NF-M, Tuj-1 뿐만 아니라 성상세포 표지자(glial marker)인 GFAP의 발현 역시 의미 있게 증가함을 real-time PCR, Western blot, and immunocytochemical staining법을 통하여 관찰하였다. 이를 개선하기 위하여, 신경분화에 중요한 신호전달자(signal intermediator)인 PDE4를 억제한 후 신경분화를 유도하였다. PDE4 억제자인 rolipram 혹은 resveratrol를 각각 처리하여 신경분화한 줄기세포(Roli- or RSV-dMSCs)에서 NF-M, Tuj-1의 발현이 증가하였고 반면, GFAP의 발현은 감소함을 real-time PCR, Western blot, and immunocytochemical staining법을 통하여 관찰하였다. 본 연구를 통하여, PDE4를 조절하며 줄기세포의 신경분화를 개선할 수 있음을 보였다.

Human bone marrow mesenchymal stem cells (hBM-MSCs) can differentiate into various cell types including osteoblasts, adipocytes, chondrocytes, and myocytes. Previous studies, including our own, have shown that MSCs can also differentiate into neuron-like cells. However, their rate of neuronal differentiation is not sufficient for application to stem cell therapy, which requires well-defined cell types. For this purpose, we first examined the expression of neuronal lineage markers (GFAP, MAP-2, KCNH1, Nestin, NF-M, and Tuj-1) by real-time PCR, western blot, and immunocytochemical staining. The expressions of the astrocyte marker GFAP and neuronal markers NF-M and Tuj-1 increased in neuronal differentiated MSCs (dMSCs). To improve the neuronal differentiation efficiency, PDE4, an important signaling intermediator in the progression of neuronal differentiation, was modulated using well-known inhibitors such as rolipram or resveratrol and then differentiated into neuronal cells (Roli- or RSV-dMSCs). The expressions of NF-M, Tuj-1 were increased while that of GFAP decreased in Roli- and RSV-dMSCs, which were examined by real-time PCR, western blot, and immunocytochemical staining. From these experiments, we have found that the neuronal differentiation efficiency can be ameliorated by the modulation of PDE4 activity.

키워드

참고문헌

  1. Atkins, C. M., Oliva, A. A. Jr., Alonso, O. F., Pearse, D. D., Bramlett, H. M. and Dietrich, W. D. 2007. Modulation of the cAMP signaling pathway after traumatic brain injury. Exp. Neurol. 208, 145-158. https://doi.org/10.1016/j.expneurol.2007.08.011
  2. Caplan, A. I. 2007. Adult mesenchymal stem cells for tissue engineering versus regenerative medicine. J. Cell. Physiol. 213, 341-347. https://doi.org/10.1002/jcp.21200
  3. Csiszar, A., Labinskyy, N., Pinto, J. T., Ballabh, P., Zhang, H., Losonczy, G., Pearson, K., de Cabo, R., Pacher, P., Zhang, C. and Ungvari, Z. 2009. Resveratrol induces mitochondrial biogenesis in endothelial cells. Am. J. Physiol. Heart Circ. Physiol. 297, H13-20. https://doi.org/10.1152/ajpheart.00368.2009
  4. DeMarch, Z., Giampa, C., Patassini, S., Martorana, A., Bernardi, G. and Fusco, F. R. 2007. Beneficial effects of rolipram in a quinolinic acid model of striatal excitotoxicity. Neurobiol. Dis. 25, 266-273. https://doi.org/10.1016/j.nbd.2006.09.006
  5. Garcia-Osta, A., Cuadrado-Tejedor, M., Garcia-Barroso, C., Oyarzabal, J. and Franco, R. 2012. Phosphodiesterases as therapeutic targets for Alzheimer's disease. ACS Chem. Neurosci. 3, 832-844. https://doi.org/10.1021/cn3000907
  6. Hannila, S. S. and Filbin, M. T. 2008. The role of cyclic AMP signaling in promoting axonal regeneration after spinal cord injury. Exp. Neurol. 209, 321-332. https://doi.org/10.1016/j.expneurol.2007.06.020
  7. Huang, Z. and Mancini, J. A. 2006. Phosphodiesterase 4 inhibitors for the treatment of asthma and COPD. Curr. Med. Chem. 13, 3253-3262. https://doi.org/10.2174/092986706778773040
  8. Jeong, S. G., Ohn, T., Kim, S. H. and Cho, G. W. 2013. Valproic acid promotes neuronal differentiation by induction of neuroprogenitors in human bone-marrow mesenchymal stromal cells. Neurosci. Lett. 554, 22-27. https://doi.org/10.1016/j.neulet.2013.08.059
  9. Joe, I. S., Jeong, S. G. and Cho, G. W. 2015. Resveratrol-induced SIRT1 activation promotes neuronal differentiation of human bone marrow mesenchymal stem cells. Neurosci. Lett. 584, 97-102. https://doi.org/10.1016/j.neulet.2014.10.024
  10. Khurana, S., Venkataraman, K., Hollingsworth, A., Piche, M. and Tai, T. C. 2013. Polyphenols: benefits to the cardiovascular system in health and in aging. Nutrients 5, 3779-3827. https://doi.org/10.3390/nu5103779
  11. Krause, W., Kuhne, G. and Sauerbrey, N. 1990. Pharmacokinetics of (+)-rolipram and (-)-rolipram in healthy volunteers. Eur. J. Clin. Pharmacol. 38, 71-75. https://doi.org/10.1007/BF00314807
  12. Neumann, S. and Woolf, C. J. 1999. Regeneration of dorsal column fibers into and beyond the lesion site following adult spinal cord injury. Neuron 23, 83-91. https://doi.org/10.1016/S0896-6273(00)80755-2
  13. Neumann, S., Bradke, F., Tessier-Lavigne, M. and Basbaum, A. I. 2002. Regeneration of sensory axons within the injured spinal cord induced by intraganglionic cAMP elevation. Neuron 34, 885-893. https://doi.org/10.1016/S0896-6273(02)00702-X
  14. Normann, C. and Berger, M. 2008. Neuroenhancement: status quo and perspectives. Eur. Arch. Psychiatry Clin. Neurosci. 258 Suppl 5, 110-114. https://doi.org/10.1007/s00406-008-5022-2
  15. Park, S. J., Ahmad, F., Philp, A., Baar, K., Williams, T., Luo, H., Ke, H., Rehmann, H., Taussig, R., Brown, A. L., Kim, M. K., Beaven, M. A., Burgin, A. B., Manganiello, V. and Chung, J. H. 2012. Resveratrol ameliorates aging-related meta-bolic phenotypes by inhibiting cAMP phosphodiesterases. Cell 148, 421-433. https://doi.org/10.1016/j.cell.2012.01.017
  16. Pittenger, M. F., Mackay, A. M., Beck, S. C., Jaiswal, R. K., Douglas, R., Mosca, J. D., Moorman, M. A., Simonetti, D. W., Craig, S. and Marshak, D. R. 1999. Multilineage potential of adult human mesenchymal stem cells. Science 284, 143-147. https://doi.org/10.1126/science.284.5411.143
  17. Price, N. L., Gomes, A. P., Ling, A. J., Duarte, F. V., Martin- Montalvo, A., North, B. J., Agarwal, B., Ye, L., Ramadori, G., Teodoro, J. S., Hubbard, B. P., Varela, A. T., Davis, J. G., Varamini, B., Hafner, A., Moaddel, R., Rolo, A. P., Coppari, R., Palmeira, C. M., de Cabo, R., Baur, J. A. and Sinclair, D. A. 2012. SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function. Cell Metab. 15, 675-690. https://doi.org/10.1016/j.cmet.2012.04.003
  18. Qiu, J., Cai, D., Dai, H., McAtee, M., Hoffman, P. N., Bregman, B. S. and Filbin, M. T. 2002. Spinal axon regeneration induced by elevation of cyclic AMP. Neuron 34, 895-903. https://doi.org/10.1016/S0896-6273(02)00730-4
  19. Woodbury, D., Schwarz, E. J., Prockop, D. J. and Black, I. B. 2000. Adult rat and human bone marrow stromal cells differentiate into neurons. J. Neurosci. Res. 61, 364-370. https://doi.org/10.1002/1097-4547(20000815)61:4<364::AID-JNR2>3.0.CO;2-C
  20. Zhang, L., Seitz, L. C., Abramczyk, A. M., Liu, L. and Chan, C. 2011. cAMP initiates early phase neuron-like morphology changes and late phase neural differentiation in mesenchymal stem cells. Cell Mol. Life Sci. 68, 863-876. https://doi.org/10.1007/s00018-010-0497-1