DOI QR코드

DOI QR Code

Antimicrobial Effects of Chlorine Dioxide Gas on Pathogenic Escherichia coli and Salmonella spp. Colonizing on Strawberries for Export

수출 딸기 중 이산화염소 가스 처리를 통한 병원성 Escherichia coli와 Salmonella spp. 저감화 효과

  • Lee, Hyo-Sub (Chemical Safety Division, Agro-Food Safety and Crop Protection Department, National Institute of Agricultural Sciences (NAS), Rural Development Administration (RDA)) ;
  • Shim, Won-Bo (Department of Food Science and Technology, Gyeongsang National University) ;
  • An, Hyun Mi (Microbial Safety Team, Agro-Food Safety and Crop Protection Department, National Institute of Agricultural Sciences (NAS), Rural Development Administration (RDA)) ;
  • Ha, Ji-Hyoung (Hygienic Safety and Analysis Center, World Institute of Kimchi) ;
  • Lee, Eun-Seon (Microbial Safety Team, Agro-Food Safety and Crop Protection Department, National Institute of Agricultural Sciences (NAS), Rural Development Administration (RDA)) ;
  • Kim, Won-Il (Microbial Safety Team, Agro-Food Safety and Crop Protection Department, National Institute of Agricultural Sciences (NAS), Rural Development Administration (RDA)) ;
  • Kim, Hwang-Yong (Division for Korea Program on International Agriculture, Technology Cooperation Bureau, RDA) ;
  • Kim, Se-Ri (Microbial Safety Team, Agro-Food Safety and Crop Protection Department, National Institute of Agricultural Sciences (NAS), Rural Development Administration (RDA))
  • 이효섭 (국립농업과학원 농산물안전성부 화학물질안전과) ;
  • 심원보 (경상대학교 식품공학과) ;
  • 안현미 (국립농업과학원 농산물안전성부 유해생물팀) ;
  • 하지형 (세계김치연구소 위생안전성분석센터) ;
  • 이은선 (국립농업과학원 농산물안전성부 유해생물팀) ;
  • 김원일 (국립농업과학원 농산물안전성부 유해생물팀) ;
  • 김황용 (농촌진흥청 기술협력국 국외농업기술과) ;
  • 김세리 (국립농업과학원 농산물안전성부 유해생물팀)
  • Received : 2016.06.28
  • Accepted : 2016.09.24
  • Published : 2016.12.30

Abstract

The purpose of this study was to determine the antimicrobial effects of $ClO_2$ gas on pathogenic E. coli and Salmonella spp. colonizing on the fruit surface of strawberries for export. Factorial design was employed to treat strawberries inoculated with pathogenic E. coli or Salmonella spp. with a combination of $ClO_2$ gas concentrations (10, 20, 30, 40, and 50 ppmv), RH (50, 70, and 90%), and treatment time (0, 5, 10, 20, and 30 min). Interaction between the factors was observed to note that the reduced levels of microbial population were the highest when RH is set at 90% with gas concentration- and treatment time-dependent manner. With RH and gas concentration fixed at 90% and 50 ppmv, the populations of E. coli and Salmonella spp. decreased by 2.07 and 2.28 log CFU/g when treated for 20 min whereas population reduction by 0.5 and 0.7 log CFU/g were observed when treated for 5 min, respectively. The results help establish most effective conditions for $ClO_2$ gas treatment to enhance microbial safety of strawberries for export.

본 연구는 수출 딸기 중 병원성 E. coli와 Salmonella spp.를 제어하기 위하여 이산화염소 가스 농도, 상대습도, 시간에 따른 이산화염소 가스의 미생물 저감효과를 조사하였다. 병원성 E. coli, salmonella spp.를 접종한 딸기에 이산화염소 가스 농도(10, 20, 30, 40, 50 ppmv), 상대습도(50, 70, 90%), 처리시간(0, 5, 10, 20, 30분)에 대한 삼요인 실험을 하였다. 그 결과, 각 처리 조건 간의 상호작용이 나타났으며 미생물 저감효과는 상대습도가 가장 높은 조건인 90%에서 이산화염소 가스 농도와 처리시간의 값이 증가할수록 높아지는 경향이 있었다. 상대습도 90%, 이산화염소 가스 농도 50 ppmv에서 처리시간에 따른 미생물 저감화 효과는 5분 동안 처리하였을 때 병원성 E. coli와 Salmonella spp.이 각각 0.5, 0.7 log CFU/g 정도 감소하였으나 20분간 처리하였을 때는 각각 2.07과 2.28 log CFU/g 정도 감소하였다. 따라서 본 연구는 수출 딸기 중 병원성 E. coli와 Salmonella spp.를 제어하기 위한 최적의 이산화염소가스 처리 조건을 확립한 결과로서 수출 딸기의 미생물 안전성 향상에 기여할 수 있으리라 사료된다.

Keywords

References

  1. Cho J.I., Ha S.D., Kim, K.S.: Inhibitory effects of temperature, pH, and potassium sorbate against natural microflora in strawberry paste during storage. Korean J. Food Sci. Technol., 36, 355-360 (2004).
  2. Ayala-Zavala J.F., Wang S.Y., Wang C.Y., Gonza'lez-Aguilar G.A.: Effect of storage temperatures on antioxidant capacity and aroma compounds in strawberry fruit. Swiss Soc. Food Sci. Technol., 37, 687-695 (2004).
  3. Azodanlou R., Darbellay C., Luisier J., Villettaz J., Amado R.: Quality assessment of strawberries (Fragaria species). J. Agric. Food Chem., 51, 715-721 (2003). https://doi.org/10.1021/jf0200467
  4. Park K.H., Kim S.H.: A comparative study of consumer preference for strawberries in korea and singapore. Korean J. Agric. Manag. Policy., 38, 321-340 (2011).
  5. Korea Agro-Fisheries & Food Trade Corporation: Agricultural products import and export statistics. Available from : https://www.kati.net/sta/staRes1Event.do, Accessed Mar. 10 (2014).
  6. U.S. Food and Drug Administration: FSMA final rule on produce safety. Available from: http://www.fda.gov/Food/GuidanceRegulation/FSMA/ucm334114.htm.Accessed May. 20, 2016 (2011).
  7. Korea Agro-Fisheries & Food Trade Corporation: Food safety regulations on imports and exports fresh produce in Indonesia. http://www.kati.net/kati.do Accessed Oct. 20, 2015 (2015).
  8. United States Department of Agriculture: Imports from China and food safety issues. http://www.ers.usda.gov/media/156008/eib52_1_.pdf do Accessed Oct. 15, 2015 (2009).
  9. U.S. Food and Drug Administration: Analysis and evaluation of preventive control measures for the control and reduction/ elimination of microbial hazards on fresh and fresh-cut produce: Chapter III. Standardization of a method to determine the efficacy of sanitizers in inactivating human pathogenic microorganisms on raw fruits and vegetables. Available from: http://www.fda.gov/food/foodscienceresearch/safepracticesforfoodprocesses/ucm091260.htm. Accessed Dec. 20, 2015 (2015).
  10. Sao Jose J.F.B., Vanetti M.C.D.: Effect of ultrasound and commercial sanitizers in removing natural contaminants and Salmonella enterica Typhimurium on cherry tomatoes. Food Control, 24, 95-99 (2012). https://doi.org/10.1016/j.foodcont.2011.09.008
  11. Keskinen L.A., Annous B.A.: Efficacy of adding detergents to sanitizer solutions for inactivation of Escherichia coli O157:H7 on Romaine lettuce. Int. J. Food Microbiol., 147, 157-161 (2011). https://doi.org/10.1016/j.ijfoodmicro.2011.04.002
  12. Vicente M., Gomez L., Peter R., Visvalingam J., Johan D., Frank D.: Shelf-life of minimally processed lettuce and cabbage treated with gaseous chlorine dioxide and cysteine. J. Food Microbiol., 121, 74-83 (2008). https://doi.org/10.1016/j.ijfoodmicro.2007.11.036
  13. Kim J.M.: Use of chlorine dioxide as a biocide in the food industry. Food industry and Nutrition, 6, 33-39 (2001).
  14. Richa V., Richard H.L., Mark T. M.: Comparison of inactivation of Listeria monocytogenes with a biofilm matrix using chlorine dioxide gas, aqueous chlorine dioxide and sodium hypochlorite treatments. J. Food Microbiol., 27, 979-984 (2009).
  15. Han Y., Guentert A.M., Smith R.S., Linton R.H., Nelson, P.E.: Efficacy of chlorine dioxide gas as a sanitizer for tanks used for aseptic juice storage. J. Food Microbiol., 16, 53-61 (1999). https://doi.org/10.1006/fmic.1998.0211
  16. Mahmoud, B.S.M., Bhagat A.R., Linton, R.H.: Inactivation kinetics of inoculated Escherichia coli O157:H7, Listeria monocytogenes and Salmonella enterica on strawberries by chlorine dioxide gas. J. Food Microbiol., 24, 736-744 (2007). https://doi.org/10.1016/j.fm.2007.03.006
  17. Bhagat A.R., Mahmoud, B.S.M., Linton, R.H.: Inactivation Salmonella enterica and Listeria monocytogenes inoculated on hydroponic uomatoes using chlorine dioxide gas Foodborne Pathogenes and Disease, 7(6), 736-744 (2007).
  18. Sy, Kaye V., McWatters Kay H., Beuchat, Larry R.: Efficacy of Gaseous Chlorine Dioxide as a Sanitizer for Killing Salmonella, Yeasts, and Molds on Blueberries, Strawberries, and Raspberries. J. Food Prot., 6, 1132-1317 (2005).
  19. Han, J.E.: Chlorine dioxide for minimally processed produce preservation : a review. Trends in Food Science & Technology, 20, 445-461 (2009).
  20. Han Y., Floros J.D., Linton R.H., Nielsen S.S., Nelson P.E.: Response surface modeling for the inactivation of Escherichia coli O157:H7 on green peppers (Capsicum annuum L.) by chlorine dioxide gas treatments. J. Food Prot., 64, 1128-1133 (2001). https://doi.org/10.4315/0362-028X-64.8.1128
  21. Han Y., Linton R.H., Nielsen S.S., Nelson P.E.: Reduction of Listeria monocytogenes on green peppers (Capsicum annuum L.) by gaseous and aqueous chlorine dioxide and water washing and its growth at $7^{\circ}C$. J. Food Prot., 64, 1730-1738 (2001). https://doi.org/10.4315/0362-028X-64.11.1730
  22. Park, S.H., Kang, D.H.: Antimicrobial effect of chlorine dioxide gas against foodborne pathogens under differing conditions of relative humidity. Food Sci. Technol., 60, 186-191 (2015).
  23. Han, Y., Guentert, A. M., Smith, R. S., Linton, R. H., Nelson, P. E.: Efficacy of chlorine dioxide gas as a sanitizer for tanks used for aseptic juice storage. J. Food Microbiol., 16, 53-61 (1999). https://doi.org/10.1006/fmic.1998.0211
  24. Trinetta V., Morgan M.T., Linton R.H.: Use of high-concentration- short-time chlorine dioxide gas treatments for the inactivation of Salmonella enterica spp. inoculated onto Roma tomatoes. J. Food Microbiol., 27, 1009-1015 (2010). https://doi.org/10.1016/j.fm.2010.06.009
  25. Trinetta V., Linton R.H., Morgan M.T.: The application of high-concentration short-time chlorine dioxide treatment for selected specialty crops including Roma tomatoes (Lycopersicon esculentum), cantaloupes (Cucumis melo ssp. melo var. cantaloupensis) and strawberries (Fragaria _ ananassa). J. Food Microbiol., 34, 296-302 (2013). https://doi.org/10.1016/j.fm.2012.12.010
  26. Lee H.E., Choi J.W., Hong Y.P., Pae D.H.: Effects of Chloride Dioxide (ClO2) Gas Treatment on the quality of strawberry during storage. Kor. J. Hort. Sci. Technol., 27, 84 (2009).