DOI QR코드

DOI QR Code

Plant Diversity, Tree Regeneration, Biomass Production and Carbon Storage in Different Oak Forests on Ridge Tops of Garhwal Himalaya

  • Received : 2015.11.23
  • Accepted : 2016.10.03
  • Published : 2016.11.30

Abstract

The present study was conducted on ridge tops of moist temperate Oak forests in Garhwal Himalaya to assess the plant diversity, regeneration, biomass production and carbon assimilation in different Oak forests. For this purpose, three Oak forest types viz., (a) Quercus leucotrichophora or Banj Oak (FT1; between 1,428-2,578 m asl), (b) Quercus floribunda or Moru Oak (FT2; between 2,430-2,697 m asl) and (c) Quercus semecarpifolia or Kharsu Oak (FT3; between 2,418-3,540 m asl) were selected on different ridge tops in Bhagirathi catchment area of Garhwal Himalaya. A total of 91 plant species including 23 trees (8 gymnosperms and 15 angiosperms), 21 shrubs and 47 herbs species belonging to 46 families were recorded from all the ridge top Oak forests. The highest mean tree density ($607{\pm}33.60trees\;ha^{-1}$) was observed in Q. floribunda forest with lower mean total basal cover (TBC) value ($48.02{\pm}3.67m^2ha^{-1}$), whereas highest TBC value ($80.16{\pm}3.30m^2ha^{-1}$) was recorded for Q. semecarpifolia forest, with lowest mean stem density ($594{\pm}23.43stems\;ha^{-1}$). The total biomass density (TBD) across three Oak forests ranged between $497.32{\pm}83.70$ (FT1) and $663.16{\pm}93.85t\;ha^{-1}$ (FT3), while the total carbon density (TCD) values ranged between $228.75{\pm}22.27$ (FT1) and $304.31{\pm}18.12t\;ha^{-1}$ (FT3). Most of the tree species were found with good regeneration (GR) status (average 45%) in all the forest types whereas, few species were found not regenerating (NR) (average 17%) however, few new recruitments were also recorded. ANOVA (Post-Hoc Tukey's test at 5% significance level) indicated significant forest-wise differences in TBC, TBD and TCD (in tree layer); family and evenness (in shrub layer only) values, while insignificant differences were noticed in density values of tree, seedling and herb layer.

Keywords

References

  1. Adhikari BS, Dhaila S, Rawat YS. 1998. Structure of Himalayan moist temperate cypress forest at and around Nainital, Kumaun Himalayas. Oecol Mont 7: 21-31.
  2. Adhikari BS, Rawat YS, Singh SP. 1995. Structure and function of high altitude forests of central Himalaya I. dry matter dynamics. Ann Bot 75: 237-248. https://doi.org/10.1006/anbo.1995.1017
  3. Benton AH, Werner Jr WE. 1976. Field biology and ecology. McGraw-Hill, New York Inc., pp 564.
  4. Bisht VK, Kuniyal CP, Nautiyal BP, Prasad P. 2013. Spatial distribution and regeneration of Quercus semecarpifolia and Quercus floribunda in a subalpine forest of western Himalaya, India. Physiolosy and Molecular Biology of Plants 19: 443-448. https://doi.org/10.1007/s12298-013-0189-z
  5. Bu R, He HS, Hu Y, Chang Y, Larsen DR. 2008. Using the LANDIS model to evaluate forest harvesting and planting strategies under possible warming climates in Northeastern China. For Ecol Manage 254: 407-419. https://doi.org/10.1016/j.foreco.2007.09.080
  6. Cottam G, Curtis JT. 1956. The use of distance measures in phytosociological sampling. Ecol 37: 451-460. https://doi.org/10.2307/1930167
  7. Curtis JT, McIntosh RP. 1950. The interrelations of certain analytic and synthetic phytosociological characters. Ecol 31: 434-455. https://doi.org/10.2307/1931497
  8. Dimri S, Baluni P, Sharma CM. 2014. Growing stock of various broad-leaved and conifer forests of Garhwal Himalaya. Int J Conserv Sci 5: 527-534.
  9. Dimri S, Baluni P, Sharma CM. 2016. Biomass production and carbon storage potential of selected old-growth temperate forests in Garhwal Himalaya, India. Proc Natl Acad Sci India, Sect B Biol Sci doi: 10.1007/s40011-016-0708-0.
  10. Dixon RK, Solomon AM, Brown S, Houghton RA, Trexier MC, Wisniewski J. 1994. Carbon pools and flux of global forest ecosystems. Science 263: 185-190. https://doi.org/10.1126/science.263.5144.185
  11. Elouard C, Houllier F, Pascal JP, Pelissier R, Ramesh BR. 1997. Dynamics of the dense moist evergreen forests. Long term monitoring of an experimental station in Kodagu district (Karnataka, India). Institute Francais de Pondichery, pp 23.
  12. Engler R, Randin CF, Vittoz P, Czaka T, Beniston M, Zimmermann NE, Guisan A. 2009. Predicting future distributions of mountain plants under climate change: does dispersal capacity matter? Ecography 32: 34-45. https://doi.org/10.1111/j.1600-0587.2009.05789.x
  13. Gairola S, Sharma CM, Ghildiyal SK, Suyal S. 2012. Regeneration dynamics of dominant tree species along an altitudinal gradient in moist temperate valley slopes of the Garhwal Himalaya. J For Res 23: 53-63. https://doi.org/10.1007/s11676-012-0233-9
  14. Gairola S, Sharma CM, Suyal S, Ghildiyal, SK. 2011. Composition and diversity of five major forest types in moist temperate climate of the western Himalayas. For Stud China 13: 139-153. https://doi.org/10.1007/s11632-011-0207-6
  15. Gaur RD. 1999. Flora of the district Garhwal: North West Himalaya (with ethnobotanical notes). Srinagar, Transmedia, Garhwal.
  16. Hall RJ, Skakun RS, Arsenault EJ, Case BS. 2006. Modeling forest stand structure attributes using Landsat ETM+ data: application to mapping of aboveground biomass and stand volume. For Ecol Manage 225: 378-390. https://doi.org/10.1016/j.foreco.2006.01.014
  17. IPCC (Intergovernmental Panel on Climate Change). 2001. Climate change 2001: the scientific basis. Contribution of working group to the third assessment report of the Intergovernmental Panel on Climate Change. Cambridge university press, U.K.
  18. Joshi A, Yadava AK. 2015. Effect of anthropogenic disturbances on plant diversity in oak dominated forests of Nainital, Kumaun Himalaya, India. New York Sci J 8: 22-27.
  19. Jurasinski G, Kreyling J. 2007. Upward shift of alpine plants increases floristic similarity of mountain summits. J Veg Sci 18: 711-718. https://doi.org/10.1111/j.1654-1103.2007.tb02585.x
  20. Kharkwal G. 2009. Qualitative analysis of tree species in evergreen forests of Kumaun Himalaya, Uttarakhand, India. African J Plant Sci 3: 49-52.
  21. Khumbongmayum AD, Khan ML, Tripathi RS. 2006. Biodiversity conservation in sacred groves of Manipur, northeast India: population structure and regeneration ststus of woody species. Biodiv Conserv 15: 2439-2456. https://doi.org/10.1007/s10531-004-6901-0
  22. Klanderund K. 2005. Climate change effects on species interactions in an alpine plant community. J Ecol 2: 127-137.
  23. Kumar A, Ram J. 2005. Anthropogenic disturbances and plant biodiversity in forests of Uttaranchal, central Himalaya. Biodiv Conserv 14: 309-331. https://doi.org/10.1007/s10531-004-5047-4
  24. Kusumlata, Bisht NS. 1991. Quantitative analysis and regeneration potential of moist temperate forest in Garhwal Himalaya. Ind J For 14: 98-106.
  25. Lodhiyal LS, Lodhiyal N, Kapkoti B. 2013. Structure and diversity of tree species in natural forests of Kumaun Himalaya in Uttarakhand. J Plant Dev Sci 5: 97-105.
  26. Malik ZA, Bhatt AB. 2015. Phytosociological analysis of woody species in Kedarnath wildlife sanctuary and its adjoining areas in Western Himalaya, India. J For Environ Sci 31: 149-163.
  27. Mckone MJ, Kelly D, Lee WG. 1998. Effect of climate change on mast-seeding species: frequency of mass flowering and escape from specialist insect seed predators. Glob Change Biol 4: 591-596. https://doi.org/10.1046/j.1365-2486.1998.00172.x
  28. Mueller-Dombois D, Ellenburg H. 1974. Aims and methods of vegetation ecology. John Wiley & Sons. Inc.
  29. Negi KS, Rawat YS, Singh JS. 1983. Estimation of biomass and nutrient storage in a Himalayan moist temperate forest. Can J For Res 13: 1185-1196. https://doi.org/10.1139/x83-157
  30. Pan Y, Bridsey RA, Fang J, Houghton R, Kauppi PE, Kurz WA, Phillips OL, Shvidenko A, Lewis SL, Canadell JG, Ciais P, Jackson RB, Pacala SW, McGuire AD, Piao S, Rautiainen A, Sitch S, Hayes D. A large and persistent carbon sink in the world's forests. Sci 13: 988-993.
  31. Pauli H, Gottfried M, Dullinger S, Abdaladze O, Akhalkatsi M, Benito Alonso JL, Coldea G, Dick J, Erschbamer B, Fernandez Calzado R, Ghosn D, Holten JI, Kanka R, Kazakis G, Kollar J, Larsson P, Moiseev P, Moiseev D, Molau U, Molero Mesa J, Nagy L, Pelino G, Puscas M, Rossi G, Stanisci A, Syverhuset AO, Theurillat JP, Tomaselli M, Unterluggauer P, Villar L, Vittoz P, Grabherr G. 2012. Recent plant diversity changes on Europe's mountain summits. Sci 336: 353-355. https://doi.org/10.1126/science.1219033
  32. Pauli H, Gottfried M, Reiter K, Klettner C, Grabherr G. 2007. Signals of range expansions and contractions of vascular plants in the high Alps: observation (1994-2004) at the GLORIA master site Schrankogel, Tyrol, Austria. Glob Change Biol 13: 147-156. https://doi.org/10.1111/j.1365-2486.2006.01282.x
  33. Phillips EA. 1959. Methods of vegetation study. Henry Halt & Co. Inc., New York, pp 107.
  34. Pielou EC. 1966. The measurement of diversity in different types of biological collections. J Theoret Biol 13: 131-144. https://doi.org/10.1016/0022-5193(66)90013-0
  35. Pregitzer KS, Euskirchen ES. 2004. Carbon cycling and storage in world forests, biome patterns related to forest age. Glob Change Biol 10: 2052-2077. https://doi.org/10.1111/j.1365-2486.2004.00866.x
  36. Pusalkar PK, Singh DK. 2012. Flora of gangotri national park, Western Himalaya, India. Botanical Survey of India, Kolkata.
  37. Rai ID, Adhikari BS, Rawat GS, Kiran B. 2012. Community structure along timberline ecotone in relation to micro-topography and disturbances in Western Himalaya. Not Sci Biol 4: 41-52.
  38. Rana BS, Singh SP, Singh RP. 1989. Biomass and net primary productivity in central Himalayan forests along an altitudinal gradient. For Ecol Manage 27: 199-218. https://doi.org/10.1016/0378-1127(89)90107-2
  39. Rawal RS, Gairola S, Dhar U. 2012. Effects of disturbance intensities on vegetation patterns in oak forests of Kumaun, west Himalaya. J Mt Sci 9: 157-165. https://doi.org/10.1007/s11629-012-2029-y
  40. Rawat YS, Singh JS. 1988. Structure and function of oak forests in central Himalaya. I. Dry matter dynamics. Ann Bot 62: 397-411. https://doi.org/10.1093/oxfordjournals.aob.a087673
  41. Schroeder P, Brown S, Mo J, Birdsey R, Cieszewski CJ. 1997. Biomass estimation for temperate broadleaf forests of the United States using inventory data. For Sci 43: 424-434.
  42. Shannon CE, Weaver W. 1963. The Mathematical Theory of Communication. Urbana, USA (University of Illinois) Press, 117.
  43. Sharma CM, Baduni N, Gairola S, Ghildiyal SK, Suyal S. 2010. Tree diversity and carbon stocks of some major forest types of Garhwal Himalaya, India. For Ecol Manage 260: 2170-2179. https://doi.org/10.1016/j.foreco.2010.09.014
  44. Sharma CM, Gairola S, Baduni NP, Ghildiyal SK, Suyal S. 2011. Variation in carbon stocks on different slope aspects in seven major forest types of temperate region of Garhwal Himalaya, India. J Biosci 36: 701-708. https://doi.org/10.1007/s12038-011-9103-4
  45. Sharma CM, Khanduri VP, Goshwami S. 2001. Community composition and population structure in temperate mixed broad-leaved and coniferous forest along an altitudinal gradient in a part of Garhwal Himalaya. J Hill Res 14: 32-43.
  46. Sharma CM, Mishra AK, Krishan R, Tiwari OP, Rana YS. 2016. Variation in vegetation composition, biomass production, and carbon storage in ridge top forests of high mountains of Garhwal Himalaya. J Sus For 35: 119-132. https://doi.org/10.1080/10549811.2015.1118387
  47. Simpson EH. 1949. Measurement of diversity. Nature 163: 633-688.
  48. Singh G, Rawat GS. 2012. Quantitative analysis of tree species diversity in different oak (Quercus spp.) dominated forests in Garhwal Himalaya, India. Not Sci Biol 4: 132-140. https://doi.org/10.15835/nsb448200
  49. Singh JS, Singh SP. 1992. Forest of Himalaya. Gyanodaya Prakashan, Nainital, India. pp 257.
  50. Singh SP, Adhikari BS, Zobel DB. 1994. Biomass productivity, leaf longevity and forest structure in the central Himalaya. Ecol Monogr 64: 401-421. https://doi.org/10.2307/2937143
  51. Srivastava RK, Khanduri VP, Sharma CM, Kumar P. 2005. Structure, diversity and regeneration potential of oak dominant conifer mixed forest along an altitudinal gradient in Garhwal Himalaya. Ind For 131: 1537-1553.
  52. Suyal S, Sharma CM, Gairola S, Ghildiyal SK, Rana CS, Butola DS. 2010. Phytodiversity (angiosperms and gymnosperms) in Chaurangikhal forest of Garhwal Himalaya, Uttarakhand, India. Ind J Sci Tech 3: 267-275.
  53. Thadani R, Ashton PMS. 1995. Regeneration of banj oak (Quercus leucotrichophora A. Camus) in the central Himalaya. For Ecol Manage 78: 217-224. https://doi.org/10.1016/0378-1127(95)03561-4
  54. Vetass OR. 2000. The effect of environmental factors on the regeneration of Quercus semecarpifolia Sm. in central Himalaya, Nepal. Plant Ecol 146: 137-144. https://doi.org/10.1023/A:1009860227886
  55. Whitmore TC. 1984. Tropical rainforests of the far east. Oxford University Press, London. pp 112-113.
  56. Whittaker RH. 1972. Evolution and measurement of species diversity. Taxon 21: 213-251. https://doi.org/10.2307/1218190
  57. Zhou Li, Dai L, Wang S, Huang X, Wang X, Qi L, Wang Q, Li G, Wei Y, Shao G. 2011. Changes in carbon density for the three old-growth forests on Changbai mountain, north east China: 1981-2010. Ann For Sci 68: 953-958. https://doi.org/10.1007/s13595-011-0101-3

Cited by

  1. Regeneration Patterns of Tree Species Along an Elevational Gradient in the Garhwal Himalaya vol.38, pp.3, 2018, https://doi.org/10.1659/MRD-JOURNAL-D-15-00076.1