참고문헌
- R. Mcpherson, "A Review of Microstructure and Properties of Plasma Sprayed Ceramic Coatings," Surf. Coat. Technol., 39 173-81 (1989).
- T. A. Taylor, D. L. Appleby, A. E. Weatherill, and J. Griffiths, "Plasma-Sprayed Yttria-Sabilized Zirconia Coatings: Structure-Prpperty Relationships," Surf. Coat. Technol., 43 470-80 (1990).
- S. Sampath, U. Schulz, M. O. Jarligo, and S. Kuroda, "Processing Science of Advanced Thermal-Barrier Systems," MRS Bull., 37 [10] 903-10 (2012). https://doi.org/10.1557/mrs.2012.233
- V. Kumar and B. Kandasubramanian, "Processing and Design Methodologies for Advanced and Novel Thermal Barrier Coatings for Engineering Applications," Particuology, 27 1-28 (2016). https://doi.org/10.1016/j.partic.2016.01.007
- A. Vaidya, V. Srinivasan, T. Streibl, M. Friis, W. Chi, and S. Sampath, "Process Maps for Plasma Spraying of Yttria-Stabilized Zirconia: An Integrated Approach to Design, Optimization and Reliability," Mater. Sci. Eng. A, 497 239-53 (2008). https://doi.org/10.1016/j.msea.2008.07.058
- A. Kulkarni, A. Vaidya, A. Goland, S. Sampath, and H. Herman, "Processing Effects on Porosity-Property Correlations in Plasma Sprayed Yttria-Stabilized Zirconia Coatings," Mater. Sci. Eng. A, 359 100-11 (2003). https://doi.org/10.1016/S0921-5093(03)00342-3
- N. Curry, N. Markocsan, X. H. Li, A. Tricoire, and M. Dorfman, "Next Generation Thermal Barrier Coatings for the Gas Turbine Industry," J. Therm. Spray Technol., 20 [1-2] 108-15 (2011). https://doi.org/10.1007/s11666-010-9593-x
- C. Kim, Y. S. Heo, T. W. Kim, and K. S. Lee, "Fabrication and Characterization of Zirconia Thermal Barrier Coatings by Spray Drying and Atmospheric Plasma Spraying," J. Korean Ceram. Soc., 50 [6] 326-32 (2013). https://doi.org/10.4191/kcers.2013.50.5.326
- S. I. Jung, J. H. Kim, J. H. Lee, Y. G. Jung, U. G. Paik, and K. S. Lee, "Microstructure and Mechanical Properties of Zirconia-based Thermal Barrier Coatings with Starting Powder Morphology," Surf. Coat. Technol., 204 [6] 802-6 (2009). https://doi.org/10.1016/j.surfcoat.2009.09.070
- P. Carpio, A. Borrell, M. D. Salvador, A. Gomez, E.Martinez, and E. Sanchez, "Microstructure and Mechanical Properties of Plasma Spraying Coatings from YSZ Feedstocks Comprising Nano- and Submicron-Sized Particles," Ceram. Int., 41 4108-17 (2015). https://doi.org/10.1016/j.ceramint.2014.11.106
- S. Mihm, T. Duda, H. Gruner, G. Thomas, and B. Dzur, "Method and Process Development of Advanced Atmospheric Plasma Spraying for Thermal Barrier Coatings," J. Therm. Spray Technol., 21 [3-4] 400-8 (2009).
- Y. Tan, V. Srinivasan, T. Nakamura, S. Sampath, P. Bertrand, and G. Bertrand, "Optimizing Compliance and Thermal Conductivity of Plasma Sprayed Thermal Barrier Coatings via Controlled Powders and Processing Strategies," J. Therm. Spray Technol., 21 [5] 950-62 (2012). https://doi.org/10.1007/s11666-012-9780-z
- F. Tang, L. Ajdelsztajn, G. E. Kimb, V. Provenzano, and J. M. Schoenung, "Effects of Variations in Coating Materials and Process Conditions on the Thermal Cycle Properties of NiCrAlY/YSZ Thermal Barrier Coatings," Mater. Sci. Eng. A, 425 94-106 (2006). https://doi.org/10.1016/j.msea.2006.03.043
- H. Guo, S. Kuroda, and H. Murakami, "Microstructures and Properties of Plasma-Sprayed Segmented Thermal Barrier Coatings," J. Am. Ceram. Soc., 89 [4] 1432-39 (2006). https://doi.org/10.1111/j.1551-2916.2005.00912.x
- J. Go, Y. G. Jung, S. Kim, and U. G. Paik, "Analysis of Thermoelastic Characteristics for Vertical-Cracked Thermal Barrier Coatings Through Mathematical Approaches," Surf. Coat. Technol., 206 1615-20 (2011). https://doi.org/10.1016/j.surfcoat.2011.07.083
- Z. Lu, M. S. Kim, S. W. Myoung, J. H. Lee, Y. G. Jung, I. S. Kim, and C. Y. Jo, "Thermal Stability and Mechanical Properties of Thick Thermal Barrier Coatings with Vertical Type Cracks," Trans. Nonferrous Met. Soc. China, 24 s29-35 (2014). https://doi.org/10.1016/S1003-6326(14)63284-2
- M. Karger, R. Vassen, and D. Stover, "Atmospheric Plasma Sprayed Thermal Barrier Coatings with High Segmentation Crack Densities: Spraying Process, Microstructure and Thermal Cycling Behavior," Surf. Coat. Technol., 206 16-23 (2011). https://doi.org/10.1016/j.surfcoat.2011.06.032
- Z. Lu, S. W. Myoung, H. S. Kim, M. S. Kim, J. H. Lee, Y. G. Jung, J. C. Jang, and U. G. Paik, "Microstructure Evolution and Interface Stability of Thermal Barrier Coatings with Vertical Type Cracks in Cyclic Thermal Exposure," J. Therm. Spray Technol., 22 [5] 671-79 (2013). https://doi.org/10.1007/s11666-013-9886-y
-
W. J. Lee, Y. S. Oh, S. M. Lee, H. T. Kim, D. S.Lim, and S. W. Kim, "Fabrication and Characterization of 7.5 wt%
$Y_2O_3-ZrO_2$ Thermal Barrier Coatings Deposited by Suspension Plasma Spray," J. Korean Ceram. Soc., 51 [6] 598-604 (2014). https://doi.org/10.4191/kcers.2014.51.6.598
피인용 문헌
- Effect of waste‐derived MA spinel on sintering and stabilization behavior of partially stabilized double phase zirconia vol.18, pp.1, 2016, https://doi.org/10.1111/ijac.13628
- Highly‐stable, nondegradable M 2 A‐reinforced YSZ ceramic composites prepared by SPS vol.18, pp.2, 2021, https://doi.org/10.1111/ijac.13664
- Effect of magnesia rich spinel on densification and stabilization behavior of monoclinic zirconia vol.58, pp.3, 2016, https://doi.org/10.1007/s43207-020-00095-0
- MgAl2O4-reinforced c-ZrO2 ceramics prepared by spark plasma sintering vol.58, pp.5, 2016, https://doi.org/10.1007/s43207-021-00126-4