Abstract
This paper proposes a change detection method based on the covariance matrices of color and edge gradient in a color video. The YCbCr color format was used instead of RGB. The color covariance matrix was calculated from the CbCr-channels and the edge gradient covariance matrix was calculated from the Y-channels. The covariance matrices were effectively calculated at each pixel by calculating the sum, squared sum, and sum of two values' multiplication of a rectangle area using the integral images from a background image. The background image was updated by a running the average between the background image and a current frame. The change areas in a current frame image against the background were detected using the Mahalanobis distance, which is a measure of the statistical distance using covariance matrices. The experimental results of an expressway color video showed that the proposed approach can effectively detect change regions for color and edge gradients against the background.
본 논문은 카메라로부터 획득한 컬러 비디오 영상에서 컬러 색상과 에지 그래디언트의 공분산 행렬에 기반한 영상의 변화영역을 검출하는 방법을 제안한다. 컬러 비디오 영상은 RGB 영상 대신에 밝기정보와 색상정보가 분리된 YCbCr 컬러비디오 포맷을 사용한다. CbCr-채널로부터 컬러의 색상분포를 알 수 있는 컬러 공분산 행렬을 계산하며, Y-채널로부터는 영상의 에지 그래디언트 분포를 알 수 있는 공분산 행렬을 계산한다. 컬러 공분산 행렬과 에지 그래디언트 공분산 행렬은 배경영상으로부터 적분영상을 사용하여 사각영역의 합계와 제곱 합계, 곱셈 합계를 효과적으로 계산하여 각 화소에서 빠르게 계산된다. 또한 시간에 따른 변화를 반영하기 위하여 배경영상과 입력영상의 가중평균에 의해 배경영상을 갱신한다. 현재 프레임에서의 배경영상으로부터의 변화영역은 컬러 공분산 행렬과 에지 그래디언트 공분산 행렬을 사용한 통계적 거리측정인 마하라노비스 거리를 이용하여 검출한다. 고속도로의 컬러 비디오 영상의 실험결과에서 컬러색상과 그래디언트의 변화영역을 효과적으로 검출할 수 있었다.