DOI QR코드

DOI QR Code

물리적 가교결합을 이용한 sPEEK 전해질막의 특성에 관한 연구

A Study on the Properties of sPEEK Electrolytic Membranes using Physical Crosslinking

  • 오세중 (선문대학교 생명화학공학과)
  • Oh, Sae-Joong (Department of Chemical and Biochemical Engineering, Sun-Moon University)
  • 투고 : 2015.10.19
  • 심사 : 2016.01.05
  • 발행 : 2016.01.31

초록

설폰화시킨 poly(etheretherketone)(sPEEK)막의 전해질 특성을 향상시키기 위하여 sPEEK에 imidazole과 무기물인 phosphotungstic acid(PWA)를 첨가하고 용액주조법을 이용하여 복합막을 제조하였다. TGA분석을 통하여 산-염기 상호작용에 의한 물리적 가교결합이 복합막의 설폰산그룹 분해에 대한 열저항성을 향상시키고 PWA의 첨가는 복합막의 열분해에 대한 저항성을 향상시키는 것을 확인할 수 있었다. 산-염기 상호작용은 sPEEK/imidazole 복합막의 함수율과 양이온전도도 및 메탄올 투과도를 감소시켰는데 이것은 물리적 가교결합이 복합막을 견고하게 만들기 때문이다. PWA는 sPEEK/imidazole/PWA 복합막의 함수율과 메탄올 투과도는 감소시켰지만 양이온전도를 향상시켰다. 따라서 PWA는 복합막의 선택도를 향상시키는 효과를 나타내었다.

Composite membranes were prepared by the solution casting method from sulfonated poly(etheretherketone)(sPEEK) and imidazole and phosphotungstic acid(PWA) to enhance the electrolytic properties of the membrane. TGA measurements showed that physical crosslinking due to acid-base interactions improved the thermal resistance to the desulfonation of sulfonic acid groups of the composite membrane and the addition of PWA enhanced the resistance to thermal decomposition of the composite membrane. The acid-base interaction decreased the water uptake, proton conductivity and methanol permeability of the sPEEK/imidazole composite membranes. The addition of PWA increased the proton conductivities while it decreased the water uptake and methanol permeability of sPEEK/imidazole/PWA composite membranes. Therefore, the selectivity of the composite membranes was enhanced by the addition of PWA.

키워드

참고문헌

  1. G. Tongzhai and S.J. Oh,"PVA/SSA/HPA Composite Membranes on the Application to Polymer Electrolyte Membrane Fuel Cell", Membrane J., 16, p.9-15, 2006.
  2. Dinh Xuan Luu and Dukjoon Kim,"Strontium Cross-Linked sPEEK Proton Exchange Membranes for Fuel Cell", Solid State Ionics, 192, p.627-631, 2011. DOI: http://dx.doi.org/10.1016/j.ssi.2010.05.007
  3. B. Smitha, S. Sridhar and A.A. Kim,"Solid Polymer Electrolyte Membranes for Fuel Cell Applications", J. Membr. Sci., 259, p.10, 2005. DOI: http://dx.doi.org/10.1016/j.memsci.2005.01.035
  4. Z.Q. Ma, P. Cheng and T.S. Zhao,"A Palladium- Alloy Deposited Nafion Membrane for Direct Methanol Fuel Cells", J. Membr. Sci., 215, p.327-336, 2003. DOI: http://dx.doi.org/10.1016/S0376-7388(03)00026-7
  5. J. Lin, H. Wang and K. Chan,"Nafion- Polyfurfuryl Alcohol Nanocomposite Mem- branes for Direct Methanol Fuel Cells", J. Membr. Sci., 246, p.95-101, 2005. DOI: http://dx.doi.org/10.1016/j.memsci.2004.08.016
  6. M. Jil, X. Ji, X. Li and H. Na,"Direct Synthesis of Sulfonated Aromatic Poly (etheretherketone) Proton Exchange Membranes For Fuel Cell Applications", J. Membr. Sci., 234, p.75-81, 2004. DOI: http://dx.doi.org/10.1016/j.memsci.2003.12.021
  7. X. Li, Z. Wang, H. Lu, C. Zhao and H. Na,"Electrochemical Properties of Sulfonated PEEK Used For Ion Exchange Membranes", J. Membr. Sci., 254, p.147-155, 2005. DOI: http://dx.doi.org/10.1016/j.memsci.2004.12.051
  8. P. Xing, G.P. Robertson, M.D. Guiver, S.D. Mikhailenko, K. Wang and S. Kaliaguine," Synthesis and Characterization of Sulfonated Poly(etheretherketone) for Proton Exchange Membranes", J. Membr. Sci., 229, p.95-106, 2004. DOI: http://dx.doi.org/10.1016/j.memsci.2003.09.019
  9. J. Kerres, A. Ulrich and M. Frank,"Synthesis and Characterization of Novel Acid-Base Polymer Blends for Application in Membrane Fuel Cells", Solid State Ionics, 125, p.243-249, 1999. DOI: http://dx.doi.org/10.1016/S0167-2738(99)00181-2
  10. J.A. Kerres,"Development of Ionomer Membranes for Fuel Cells", J. Membr. Sci., 185, p.3-27, 2001. DOI: http://dx.doi.org/10.1016/S0376-7388(00)00631-1
  11. M. Guo, B. Liu, Z. Liu, L. Wang and Z. Jiang," Novel Acid-Base Molecules-Enhanced Blends/ Copolymers for Fuel Cell Applications", Journal of Power Sources, 189, p.894-901, 2009. DOI: http://dx.doi.org/10.1016/j.jpowsour.2008.12.137
  12. D.H. Kang and D. Kim,"Modification of Nafion Membranes by Incorporation of Cationic Polymer for Reduction of Methanol Permeability", Korean J. Chem. Eng., 24, p.1001-1105, 2007. DOI: http://dx.doi.org/10.1007/s11814-007-0128-1
  13. S.M.J. Jaidi, S.D. Mikhailenko, G.P. Robertson, M.D. Guiver and S. Kaliaguine,"Proton Conducting Composite Membranes from Poly (etheretherketone) and Heteropoly acids for Fuel Cell Applications", J. Membr. Sci., 173, p.17-34, 2000. DOI: http://dx.doi.org/10.1016/S0376-7388(00)00345-8
  14. S.J. Oh,"A Study on the Electrochemical Properties of SPEEK/PWA/Silica Composite Membranes", J. Korean Academia-Industrial Cooperation Society, 14, p.2529-2535, 2013. DOI: http://dx.doi.org/10.5762/KAIS.2013.14.5.2529
  15. B.S. Kandel, T. Gao and S.J. Oh,"The Effect of Acid-Base Interaction on the Thermal and Transport Properties of Poly(etheretherketone) Based Composite Membranes", Korean. J. Chem. Eng., 27, p.1581-1591, 2010. DOI: http://dx.doi.org/10.1007/s11814-010-0244-1
  16. A.M. Herring,"Inorganic-Polymer Composite Membranes for Proton Exchange Membrane Fuel Cells", J. Macromol. Sci. Part C: Polymer Reviews, 46, p.245-296, 2006. DOI: http://dx.doi.org/10.1080/00222340600796322