DOI QR코드

DOI QR Code

콘크리트의 역학적 성능 및 공극구조가 스케일링 저항성에 미치는 영향

Influence of Mechanical Properties and Pore Structure on the Scaling Resistance of Concretes

  • Lee, Seung-Tae (Department of Civil Engineering, Kunsan National University)
  • 투고 : 2015.09.16
  • 심사 : 2016.01.05
  • 발행 : 2016.01.31

초록

스케일링은 겨울철 제설제 살포 및 동결융해의 복합작용으로 인하여 교통시설 구조물에서 발생하는 대표적인 콘크리트의 성능저하 현상이다. 본 논문에서는 콘크리트의 스케일링 저항성에 영향을 미치는 요인을 분석하기 위하여 콘크리트의 역학적 성능, 공극구조 특성과 스케일링 저항성과의 관계를 실험적으로 고찰하였다. 실험결과, 콘크리트의 스케일링 저항성은 콘크리트의 압축강도와는 그다지 상관관계가 적었으며, 오히려 콘크리트의 표면투수 특성과 밀접한 관련이 있는 것으로 조사되었다. 또한, 콘크리트의 스케일링 저항성을 평가하기 위한 파라미터로써, 기포 간극계수 및 비표면적은 적합하지 않은 것으로 나타났다. 한편, 결합재의 종류에 따른 스케일링 저항성도 상이하게 나타났으며, 보통포틀랜드시멘트 콘크리트 및 실리카흄 콘크리트에 비하여 고로슬래그미분말을 사용한 콘크리트의 스케일링 저항성이 상대적으로 낮은 것으로 나타났다.

The scaling of concrete caused by the combined effects of frost and deicing salt is one of the principle causes of damage to transportation infrastructure in cold-climate regions. In this study, to evaluate the factors affecting scaling resistance of concrete, the relationship between the properties of concrete, such as the mechanical properties and pore structure, and scaling resistance was examined experimentally. The test results showed that the scaling resistance was strongly dependent on the absorption properties of concrete, but not on the compressive strength. Furthermore, it is believed that both the spacing factor and specific surface of the air voids was not a good parameter for evaluating the scaling resistance of concrete. SGC concrete was less durable than OPC and SFC concrete with respect to the scaling resistance in the scope of the present study.

키워드

참고문헌

  1. P. C. Aitcin, "Cement of yesterday and today concrete of tomorrow", Cement and Concrete Research, Vol. 30, pp. 1349-1359, 2000. DOI: http://dx.doi.org/10.1016/S0008-8846(00)00365-3
  2. S. Y. Han, K. K. Yun, K. G. Nam, K. R. Lee, Y. D. Eum, "Mechanical properties and chloride penetration resistance of shotcrete according to mineral admixture types and supplemental ratio", Journal of the Korea Academia-Industrial Cooperation Society, Vol. 16, No. 7, pp. 4960-4968, 2015. DOI: http://dx.doi.org/10.5762/KAIS.2015.16.7.4960
  3. A. Elahi, P. A. M. Basheer, S. V. Nanukuttan, Q. U. Z. Khan, "Mechanical and durability properties of high performance concretes containing supplementary cementitious materials", Construction and Building Materials, Vol. 24, No. 3, pp. 292-299, 2010. DOI: http://dx.doi.org/10.1016/j.conbuildmat.2009.08.045
  4. J. J. Valenza, G. W. Scherer, "A review of salt scaling: II. Mechanism", Cement and Concrete Research, Vol. 37, No. 4, p. 1022-1034, 2007. DOI: http://dx.doi.org/10.1016/j.cemconres.2007.03.003
  5. P. V. Heede, J. Fumiere, N. D. Belie, "Influence of air entraining agents on deicing salt scaling resistance and transport properties of high-volume fly ash concrete", Cement and Concrete Composites, Vol. 37, pp. 293-303, 2013. DOI: http://dx.doi.org/10.1016/j.cemconcomp.2013.01.005
  6. A. Nowak-Michta, "Water-binder ratio influence on de-icing salt scaling of fly ash concretes", Procedia Engineering, Vol. 57, pp. 823-829, 2013. DOI: http://dx.doi.org/10.1016/j.proeng.2013.04.104
  7. S. I. Jeon, J. H. An, J. B. Lee, S. A. Kwon, "Variation of image analysis results for determining the characteristics of the air-void system on hardened concrete", Journal of the Korean Society of Road Engineers, Vol. 13, No. 1, pp. 157-168, 2011. DOI: http://dx.doi.org/10.7855/ijhe.2011.13.1.157
  8. R, Siddique, "Utilization of silica fume in concrete: Review of hardened properties", Resources, Conservation and Recycling, Vol. 55, No. 11, pp. 923-932, 2011. DOI: http://dx.doi.org/10.1016/j.resconrec.2011.06.012
  9. P. K. Mehta, P. J. M. Monterio, "Concrete-Microstructure, Properties and Materials", Third Edition, McGraw-Hill, p. 31, 2006.
  10. J. Deja, "Freeing and de-icing salt resistance of blast furnace slag concretes", Cement and Concrete Composites, Vol. 25, No. 3, pp. 357-361, 2003. DOI: http://dx.doi.org/10.1016/S0958-9465(02)00052-5
  11. J. Stark, H. M. Ludwig, "Freeze-de-icing salt resistance of concretes containing cement rich-in slag", In: Proceedings of the International RILEM Wokshop, E&FN Spon, p. 123-38, 1997.
  12. J. J. Valeza, G. W. Scherer, "A review of salt scaling: I. Phenomenology", Cement and Concrete Research, Vol. 37, No. 7, pp. 1007-1021. 2007. DOI: http://dx.doi.org/10.1016/j.cemconres.2007.03.005
  13. J. Stark, H. M. Ludwig, "Freeze-thaw and freeze-deicing salt resistance of concrete containing cement rich in granulated blast-furnace slag", ACI Materials Jpurnal, Vol. 94, No. 1, p. 47-55, 1994.
  14. D. K. Panesar, S. E. Chidiac, "Multi-variable statistical analysis for scaling resistance of concrete containing GGBFS", Cement and Concrete Composites, Vol. 29, No. 1, pp. 39-48, 2007. DOI: http://dx.doi.org/10.1016/j.cemconcomp.2006.08.002