References
- Afshoon, I., & Sharifi, Y. (2014). Ground copper slag as a supplementary cementing material and its influence on the fresh properties of self-consolidating concrete. The IES Journal Part A: Civil & Structural Engineering, 7(4), 229-242.
- Alp, I., Deveci, H., & Sungun, H. (2008). Utilization of flotation wastes of copper slag as raw material in cement production. Journal of Hazardous Materials, 159, 390-395. https://doi.org/10.1016/j.jhazmat.2008.02.056
- Alya, M., Hashmi, M. S. J., Olabi, A. G., Messeiry, M., Abadir, E. F., & Hussain, A. I. (2012). Effect of colloidal nanosilica on the mechanical and physical behavior of wasteglass cement mortar. Materials and Design, 33, 127-135. https://doi.org/10.1016/j.matdes.2011.07.008
- ASTM C496/C496M-04. (2004). Standard test method for splitting tensile strength of cylindrical concrete specimens. West Conshohocken, PA: ASTM International.
- ASTM C1260-07. (2007). Standard specification for potential alkali reactivity of aggregates (mortar-bar method). West Conshohocken, PA: ASTM International.
- ASTM C33/C33M-08. (2008). Standard specification for concrete aggregates. West Conshohocken, PA: ASTM International.
- ASTM C403/C403M-08. (2008). Standard specification for time of setting of concrete mixtures by penetration resistance. West Conshohocken, PA: ASTM International.
- ASTM C157/C157M-08. (2008). Standard specification for length change of hardened hydraulic-cement mortar and concrete. West Conshohocken, PA: ASTM International.
- ASTM C150/C150M-09. (2009). Standard specification for Portland cement. West Conshohocken, PA: ASTM International.
- ASTM C94/C94M-09. (2009). Standard specification for ready-mixed concrete. West Conshohocken, PA: ASTM International.
- ASTM C231/C231M-09. (2009). Standard specification for air content of freshly mixed concrete by the pressure method. West Conshohocken, PA: ASTM International.
- ASTM C494/C494M-10. (2010). Standard specification for chemical admixtures for concrete. West Conshohocken, PA: ASTM International.
- Beltran, M. G., Barbudo, A., Agrela, F., Galvn, A. P., & Jimenez, J. R. (2014). Effect of cement addition on the properties of recycled concretes to reach control concretes strengths. Journal of Cleaner Production, 79, 124-133. https://doi.org/10.1016/j.jclepro.2014.05.053
- Bingol, A. F., & Tohumcu, I. (2013). Effects of different curing regimes on the compressive strength properties of self-compacting concrete incorporating fly ash and silica fume. Materials and Design, 51, 12-18. https://doi.org/10.1016/j.matdes.2013.03.106
- BS 1881: Part 116. (1983). Testing concrete: method for determination of compressive strength of concrete cubes. British Standard Institution (BSI).
- BS 1881: Part 122. (1983). Testing concrete: Method for determination of water absorption. British Standard Institution (BSI).
- BS EN 12390:2009. (2009). Part 7. Testing hardened concrete: Density of hardened concrete.
- Carpenter, A. J., & Cramer, S. M. (1999). Mitigation of ASR in pavement patch concrete that incorporates highly reactive fine aggregate (pp. 60-67). Transportation Research Record 1668, Paper No. 99-1087. https://doi.org/10.3141/1668-09
- CEB-FIB model code 1990. (1993). Committee Euro-International du Beton. Thomas Telford, London, UK.
- Chen, C. H., Huang, R., Wu, J. K., & Yang, C. C. (2006). Waste E-glass particles used in cementitious mixtures. Cement and Concrete Research, 36, 449-456. https://doi.org/10.1016/j.cemconres.2005.12.010
- Craeye, B., Itterbeeck, P. V., Desnerck, P., Boel, V., & De Schutter, G. (2014). Modulus of elasticity and tensile strength of self-compacting concrete: Survey of experimental data and structural design codes. Cement & Concrete Composites, 54, 53-61. https://doi.org/10.1016/j.cemconcomp.2014.03.011
- Domone, P. L. (1997). A review of the hardened mechanical properties of self-compacting concrete. Cement and Concrete Composites, 29, 1-12.
- Druta, C., Wang, L., & Stephen, Lane D. (2014). Tensile strength and paste-aggregate bonding characteristics of self-consolidating concrete. Construction and Building Materials, 55, 89-96. https://doi.org/10.1016/j.conbuildmat.2014.01.010
- Du, H., & Tan, K. H. (2013). Use of waste glass as sand in mortar: Part II-Alkali-silica reaction and mitigation methods. Cement & Concrete Composites, 35, 118-126. https://doi.org/10.1016/j.cemconcomp.2012.08.029
- Dyer, T. D., & Dhir, R. K. (2001). Chemical reactions of glass cullet used as cement component. Journal of Materials in Civil Engineering, 13(6), 412-417. https://doi.org/10.1061/(ASCE)0899-1561(2001)13:6(412)
- EFNARC. (2005). The European guidelines for self-compacting concrete: specification, production and use. The Self- Compacting Concrete European Project Group.
- EN 1351:1997. (1997). Determination of flexural strength of autoclaved aerated concrete.
- Federico, L. M., & Chidiac, S. E. (2009). Waste glass as a supplementary cementitious material in concrete-critical review of treatment methods. Cement & Concrete Composites,31, 606-610. https://doi.org/10.1016/j.cemconcomp.2009.02.001
- Feldman, R. F., & Hauang, C. Y. (1985a). Properties of Portland cement-silica-fume pastes I: Porosity and surface properties. Cement and Concrete Research, 15(5), 765-774. https://doi.org/10.1016/0008-8846(85)90141-3
- Feldman, R. F., & Hauang, C. Y. (1985b). Properties of Portland cement-silica-fume pastes II: Mechanical properties. Cement and Concrete Research, 15(6), 943-952. https://doi.org/10.1016/0008-8846(85)90083-3
- Guneyisi, E., Gesoglu, M., & Ozbay, E. (2010). Strength and drying shrinkage properties of self-compacting concretes incorporating multi-system blended mineral admixtures. Construction and Building Materials, 24, 1878-1887. https://doi.org/10.1016/j.conbuildmat.2010.04.015
- Hameed, M. S., Sekar, A. S. S., & Saraswathy, V. (2012). Strength and permeability characteristics study of selfcompacting concrete using crusher rock dust and marble sludge powder. The Arabian Journal for Science and Engineering, 37, 561-574. https://doi.org/10.1007/s13369-012-0201-x
- Jackson, N., & Dhir, K. R. (1996). Civil engineering materials (5th ed.). London, UK: Macmillan Press Ltd.
- Jain, J. A., & Neithalath, N. (2010). Chloride transport in fly ash and glass powder modified concretes-influence of test methods on microstructure. Cement & Concrete Composites, 32, 148-156. https://doi.org/10.1016/j.cemconcomp.2009.11.010
- Liu, M. (2011). Incorporating ground glass in self-compacting concrete. Construction and Building Materials, 25, 919-925. https://doi.org/10.1016/j.conbuildmat.2010.06.092
- Lotfy, A., Hossain, K. M. A., & Lachemi, M. (2015). Lightweight self-consolidating concrete with expanded shale aggregates: Modelling and optimization. International Journal of Concrete Structures and Materials, 9(2), 185-206. https://doi.org/10.1007/s40069-015-0096-5
- Mahmoud, E., Ibrahim, A., El-Chabib, H., & Patibandla, V. C. (2013). Self-consolidating concrete incorporating high volume of fly ash, slag, and recycled asphalt pavement. International Journal of Concrete Structures and Materials, 7(2), 155-163. https://doi.org/10.1007/s40069-013-0044-1
- Meyer, C., & Baxter, S. (1997). Use of recycled glass for concrete masonry blocks final report 97-15. Albany, NY:New York State Energy Research and Development Authority.
- Mirzahosseini, M., & Riding, K. A. (2014). Effect of curing temperature and glass type on the pozzolanic reactivity of glass powder. Cement and Concrete Research, 58, 103-111. https://doi.org/10.1016/j.cemconres.2014.01.015
- Nikbin, I. M., Beygi, M. H. A., Kazemi, M. T., Amiri, J. V., Rabbanifar, S., Rahmani, E., & Rahimi, S. (2014). A comprehensive investigation into the effect of water to cement ratio and powder content on mechanical properties of self-compacting concrete. Construction and Building Materials, 57, 69-80. https://doi.org/10.1016/j.conbuildmat.2014.01.098
- Nuruddin, M. F., Chang, K. Y., & Azmee, N. M. (2014). Workability and compressive strength of ductile self-compacting concrete (DSCC) with various cement replacement materials. Construction and Building Materials, 55, 153-157. https://doi.org/10.1016/j.conbuildmat.2013.12.094
- Okamura, H., & Ouchi, M. (2003). Self-compacting concrete. Journal of Advanced Concrete Technology, 1(1), 5-15. https://doi.org/10.3151/jact.1.5
- Oliveira, L. A., Castro-Gomes, J. P., & Santos, P. (2008). Mechanical and durability properties of concrete with ground waste glass sand. In 11th international conference on durability of building materials and components, Istanbul, Turkey.
- Park, S. B., Lee, B. C., & Kim, J. H. (2004). Studies on mechanical properties of concrete containing waste glass aggregate. Cement and Concrete Research, 34, 2181-2189. https://doi.org/10.1016/j.cemconres.2004.02.006
- Parra, C., Valcuende, M., & Gomez, F. (2011). Splitting tensile strength and modulus of elasticity of self-compacting concrete. Construction and Building Materials, 22, 201-207.
- Ponikiewski, T., & Golaszewski, J. (2014). The influence of high-calcium fly ash on the properties of fresh and hardened self-compacting concrete and high performance self compacting concrete. Journal of Cleaner Production, 72, 212-221. https://doi.org/10.1016/j.jclepro.2014.02.058
- Sfikas, I. P., Badogiannis, E. G., & Trezos, K. G. (2014). Rheology and mechanical characteristics of self-compacting concrete mixtures containing metakaolin. Construction and Building Materials, 64, 121-129. https://doi.org/10.1016/j.conbuildmat.2014.04.048
- Shao, Y., Lefort, T., Moras, S., & Rodriguez, D. (1999). Studies on concrete containing ground waste glass. Concrete and Cement Research, 30(1), 91-100.
- Sharifi, Y., Hoshiar, M., & Aghebati, B. (2013). Recycled glass replacement as fine aggregate in self-compacting concrete. Frontiers of Structural and Civil Engineering, 7(4), 419-428. https://doi.org/10.1007/s11709-013-0224-8
- Sharifi, Y., Afshoon, I., & Firoozjaie, Z. (2015). Fresh properties of self-compacting concrete containing ground waste glass microparticles as cementing material. Journal of Advanced Concrete Technology, 13(2), 50-66. https://doi.org/10.3151/jact.13.50
- Shayan, A., & Xu, A. (2006). Performance of glass powder as a pozzolanic material in concrete: A field trial on concrete slabs. Cement and Concrete Research, 36, 457-468. https://doi.org/10.1016/j.cemconres.2005.12.012
- Shi, C., Wu, Y., Shao, Y., & Riefler, C. (2004). Alkali-aggregate reaction of concrete containing ground glass powder. In Proceedings of the 12th international conference on AAR in concrete (pp. 789-795).
- Shi, C., Wu, Y., Riefler, C., & Wang, H. (2005). Characteristics and pozzolanic reactivity of glass powders. Cement and Concrete Research, 35(5), 987-993. https://doi.org/10.1016/j.cemconres.2004.05.015
- Siddique, R. (2013). Compressive strength, water absorption, sorptivity, abrasion resistance and permeability of selfcompacting concrete containing coal bottom ash. Construction and Building Materials, 47, 1444-1450. https://doi.org/10.1016/j.conbuildmat.2013.06.081
- Tam, C. M., Tam, V. W. Y., & Ng, K. M. (2012). Assessing drying shrinkage and water permeability of reactive powder concrete produced in Hong Kong. Construction and Building Materials, 26, 79-89. https://doi.org/10.1016/j.conbuildmat.2011.05.006
- Uysal, M. (2012). Self-compacting concrete incorporating filler additives: Performance at high temperatures. Construction and Building Materials, 26, 701-706. https://doi.org/10.1016/j.conbuildmat.2011.06.077
- Valcuendea, M., Parra, C., Marco, E., Garrido, A., Martinez, E., & Canoves, J. (2012). Influence of limestone filler and viscosity-modifying admixture on the porous structure of self-compacting concrete. Construction and Building Materials, 28, 122-128. https://doi.org/10.1016/j.conbuildmat.2011.07.029
- Wang, H. Y. (2011). The effect of the proportion of thin film transistor-liquid crystal display (TFT-LCD) optical waste glass as a partial substitute for cement in cement mortar. Construction and Building Materials, 25, 791-797. https://doi.org/10.1016/j.conbuildmat.2010.07.004
- Wang, H. Y., & Huang, W. L. (2010). A study on the properties of fresh self-consolidating glass concrete (SCGC). Construction and Building Materials, 24, 619-624. https://doi.org/10.1016/j.conbuildmat.2009.08.047
- Wiegrink, K., Marikunte, S. M., & Shah, S. P. (1996). Shrinkage cracking of high-strength concrete. ACI Materials Journal, 93(5), 409-415.
- Zhu, H. Y., Chen, W., Zhou, W., & Byars, E. A. (2009). Expansion behaviour of glass aggregates in different testing for alkali-silica reactivity. Materials and Structures, 42(4), 485-494. https://doi.org/10.1617/s11527-008-9396-4
- Zong, L., Fei, Z., & Zhang, S. (2014). Permeability of recycled aggregate concrete containing fly ash and clay brick waste. Journal of Cleaner Production, 70, 175-182. https://doi.org/10.1016/j.jclepro.2014.02.040
Cited by
- Effects of Different Lightweight Functional Fillers for Use in Cementitious Composites vol.11, pp.1, 2016, https://doi.org/10.1007/s40069-016-0184-1
- An investigation into the influence of superabsorbent polymers on the properties of glass powder modified cement pastes vol.149, pp.None, 2016, https://doi.org/10.1016/j.conbuildmat.2017.04.125
- Experimental Study of Self-Compacting Mortar Incorporating Recycled Glass Aggregate vol.8, pp.2, 2016, https://doi.org/10.3390/buildings8020015
- Incorporating Liquid Crystal Display (LCD) Glass Waste as Supplementary Cementing Material (SCM) in Cement Mortars—Rationale Based on Hydration, Durability, and Pore Characteristics vol.11, pp.12, 2016, https://doi.org/10.3390/ma11122538
- An investigation into the properties of ternary and binary cement pastes containing glass powder vol.13, pp.3, 2016, https://doi.org/10.1007/s11709-018-0511-5
- Correction to: Utilization of Waste Glass Micro-particles in Producing Self-Consolidating Concrete Mixtures vol.13, pp.1, 2016, https://doi.org/10.1186/s40069-019-0332-5
- Environmental protection by using waste copper slag as a coarse aggregate in self-compacting concrete vol.271, pp.None, 2020, https://doi.org/10.1016/j.jenvman.2020.111013
- Evaluation of the Pozzolanic Activity of Glass Powder in Three Maximum Grain Sizes vol.24, pp.4, 2016, https://doi.org/10.1590/1980-5373-mr-2020-0496
- Effects of waste glass and rubber on the SCC: rheological, mechanical, and durability properties vol.25, pp.2, 2016, https://doi.org/10.1080/19648189.2018.1528891
- Roles of Waste Glass and the Effect of Process Parameters on the Properties of Sustainable Cement and Geopolymer Concrete-A State-of-the-Art Review vol.13, pp.22, 2016, https://doi.org/10.3390/polym13223935
- Long-term field performance of concrete produced with powder waste glass as partial replacement of cement vol.15, pp.None, 2016, https://doi.org/10.1016/j.cscm.2021.e00745
- Investigation on the Mechanical Properties and Microstructure of Eco-friendly Mortar Containing WGP at Elevated Temperature vol.15, pp.1, 2016, https://doi.org/10.1186/s40069-020-00434-9