References
- Abrams, D. A. (1917). Effect of rate of application of load on the compressive strength of concrete. ASTM Journal, 17, 364-377.
- ACI Committee 555. (2002). Removal and reuse of hardened concrete. ACI Material Journal, 99(3), 300-325.
- Ajdukiewicz, A. B., & Kliszczewicz, A. T. (2007). Comparative tests of beams and columns made of recycled aggregate concrete and natural aggregate concrete. Journal of Advanced Concrete Technology, 5(2), 259-273. https://doi.org/10.3151/jact.5.259
- Atchley, B. L., & Furr, H. L. (1967). Strength and energyabsorption capabilities of plain concrete under dynamic and static loading. ACI Journal Proceedings, 64(11), 745-756.
- Bertero, V. V., Aktan, A. E., Charney, F. A., & Sause, R. (1984). Earthquake simulation tests and associated studies of a 1/5th scale model of a 7-story RC test structure. U.S.-Japan cooperative earthquake research program, report no. UCB/EERC-84/05. Berkeley, CA: Earthquake Engineering Research Center, University of California.
- Bischoff, P. H., & Perry, S. H. (1991). Compressive behavior of concrete at high strain rates. Materials and Structures, 24(6), 425-450. https://doi.org/10.1007/BF02472016
- Cadoni, E., Labibes, K., & Albertini, C. (2001). Strain-rate effect on the tensile behaviour of concrete at different relative humidity levels. Materials and Structures, 235(34), 21-26.
- Chang, K. C., & Lee, G. C. (1987). Strain rate effect on structural steel under cyclic loading. Journal of Engineering Mechanics, ASCE, 113(9), 1292-1301. https://doi.org/10.1061/(ASCE)0733-9399(1987)113:9(1292)
- Chen, X. D., Wu, S. X., & Zhou, J. K. (2013). Experimental and modeling study of dynamic mechanical properties of cement paste, mortar and concrete. Construction and Building Materials, 47, 419-430. https://doi.org/10.1016/j.conbuildmat.2013.05.063
- Cotsovos, D. M., & Pavlovic, M. N. (2006). Simplified FE model for RC structures under earthquakes. Structure Buildings, 159, 87-102.
- Cotsovos, D. M., & Pavlovic, M. N. (2008). Numerical investigation of concrete subjected to high rates of uniaxial tensile loading. International Journal of Impact Engineering, 35, 319-335. https://doi.org/10.1016/j.ijimpeng.2007.03.006
- Fathifazl, G., Razaqpur, A. G., Isgor, O. B., Abbas, A., Fournier, B., & Foo, S. (2009). Flexural performance of steelreinforced recycled concrete beams. ACI Structural Journal, 106(6), 858-867.
- Filippou, F. C., D'Ambrisi, A., & Issa, A. (1992). Nonlinear static and dynamic analysis of reinforced concrete subassemblages. Report No. UCB/EERC-92/08. Berkeley, CA: Earthquake Engineering Research Center, University of California.
- GB 50011. (2010). Code for seismic design of buildings. Beijing, China: Chinese Building Press.
- Hansen, T. C. (1986). Recycled aggregate and recycled aggregate concrete, second state-of-the-art report, developments from 1945-1985. Materials and Structures, 111, 201-246.
- Hognestad, E. (1951). A study of combined bending and axial load in reinforced concrete. Bulletin series 339, Illinois (USA), University of Illinois Experiment Station.
- Kent, D. C., & Park, R. (1971). Flexural members with confined concrete. Journal of the Structural Division, ASCE, 97(ST7), 1969-1990.
- Kulkarni, S. M., & Shah, S. P. (1998). Response of reinforced concrete beams at high strain rates. ACI Structural Journal, 95(6), 705-715.
- Lai, J., & Sun, W. (2009). Dynamic behavior and visco-elastic modeling of ultra-high performance cementitious composite. Cement Concrete Research, 39, 1044-1051. https://doi.org/10.1016/j.cemconres.2009.07.012
- Le, N. H., & Bailly, P. (2000). Dynamic behaviour of concrete:The structural effects on compressive strength increase. Mechanics of Cohesive-Frictional Materials, 5(6), 491-510. https://doi.org/10.1002/1099-1484(200008)5:6<491::AID-CFM106>3.0.CO;2-R
- Li, M., & Li, H. N. (2012). Effects of strain rate on reinforced concrete structure under seismic loading. Advances in Structural Engineering, 15(3), 461-475. https://doi.org/10.1260/1369-4332.15.3.461
- Lin, F., Gu, X. L., Kuang, X. X., & Yin, X. J. (2008). Constitutive models for reinforcing steel bars under high strain rates. Journal of Building Materials, 11(1), 14-20.
- Lu, Y. B., Chen, X., Teng, X., & Zhang, S. (2014). Dynamic compressive behavior of recycled aggregate concrete based on split Hopkinson pressure bar tests. Latin American Journal of Solids and Structures, 11(1), 131-141. https://doi.org/10.1590/S1679-78252014000100008
- Malvar, L. J., & Crawford, J. E. (1998). Dynamic increase factors for steel reinforcing bars. In Proceedings of the twenty-eighth DoD explosives safety seminar, Orlando, FL, USA.
- Malvar, L. J., & Ross, C. A. (1998). Review of strain rate effects for concrete in tension. ACI Materials Journal, 95(6), 435-439.
- Mazzoni, S., Mckenna, F., Scott, M. H., & Fenves, G. L. (2006). Open system for earthquake engineering simulation, user command-language manual. Berkeley, CA: Pacific Earthquake Engineering Research Center, University of California.
- Norris, C. H., Hansen, R. J., Holley, M. J., Biggs, J. M., Namyet, S., & Minasmi, J. K. (1959). Structural design for dynamic loads. New York, NY: McGraw-Hill.
- Oh, B. H. (1987). Behavior of concrete under dynamic tensile loads. ACI Materials Journal, 84(1), 8-13.
- Pandey, A. K., Kumar, R., Paul, D. K., & Trikha, D. N. (2006). Strain rate model for dynamic analysis of reinforced concrete structures. Journal of Structural Engineering, ASCE, 132(9), 1393-1401. https://doi.org/10.1061/(ASCE)0733-9445(2006)132:9(1393)
- Restrepo-Posada, J. I., Dodd, L. L., Park, R., & Cooko, N. (1994). Variables affecting cyclic behavior of reinforcing steel. Journal of Structural Engineering, ASCE, 120(11), 3178-3196. https://doi.org/10.1061/(ASCE)0733-9445(1994)120:11(3178)
- Scott, B. D., Park, R., & Priestley, M. J. N. (1982). Stress-strain behavior of concrete confined by overlapping hoops at low and high strain rates. ACI Journal, 79(1), 13-27.
- Shing, P. S. B., & Mahin, S. A. (1988). Rate of loading effects on pseudo dynamic tests. Journal of Structural Engineering, ASCE, 114(11), 2403-2420. https://doi.org/10.1061/(ASCE)0733-9445(1988)114:11(2403)
- Soroushian, P., & Choi, K. B. (1987). Steel mechanical properties at different strain rates. Journal of Structural Engineering, ASCE, 113(4), 663-672. https://doi.org/10.1061/(ASCE)0733-9445(1987)113:4(663)
- Taucer, F. F., Spacone, E., & Filippou, F. C. (1991). A fiber beam-column element for seismic response analysis of reinforced concrete structures. Report no. UCB/EERC-91/17. Berkeley, CA: Earthquake Engineering Research Center, University of California.
- The Euro-International Committee for Concrete (CEB). (1993). CEB-FIP model code 1990. Lausanne: Thomas Telford Ltd.
- Wakabayashi, M., Nakamura, T., Iwai, S., & Hayashi, Y. (1984). Effect of strain rate on the behavior of structural members subjected to earthquake force. In Proceeding 8th world conference on earthquake engineer, San Francisco, CA (pp. 491-498).
- Wang, C. Q. (2012). Research on shaking table test and nonlinear analysis for recycled aggregate concrete frame structure. PhD Thesis, College of Civil Engineering, Tongji University, Shanghai, China.
- Wang, C. Q., & Xiao, J. Z. (2012). Shaking table tests on a recycled concrete block masonry building. Advances in Structural Engineering, 15(10), 1843-1860. https://doi.org/10.1260/1369-4332.15.10.1843
- Xiao, J. (2008). Recycled concrete. Beijing, China: Chinese Building Press. (in Chinese).
- Xiao, S., Li, H., & Lin, G. (2008). Dynamic behaviour and constitutive model of concrete at different strain rates. Magazine of Concrete Research, 60(4), 271-278. https://doi.org/10.1680/macr.2008.60.4.271
- Xiao, J. Z., Li, L., Shen, L. M., & Poon, C. S. (2015). Compressive behaviour of recycled aggregate concrete under impact loading. Cement and Concrete Research, 71, 46-55. https://doi.org/10.1016/j.cemconres.2015.01.014
- Xiao, J. Z., Li, J. B., & Zhang, C. (2005). Mechanical properties of recycled aggregate concrete under uniaxial loading. Cement and Concrete Research, 35, 1187-1194. https://doi.org/10.1016/j.cemconres.2004.09.020
- Xiao, J. Z., Wang, C. Q., Li, J., & Tawana, M. M. (2012a). Shake-table model tests on recycled aggregate concrete frame structure. ACI Structural Journal, 109(6), 777-786.
- Xiao, J. Z., Xie, H., & Yang, Z. (2012b). Shear transfer across a crack in recycled aggregate concrete. Cement and Concrete Research, 42(5), 700-709. https://doi.org/10.1016/j.cemconres.2012.02.006
- Xiao, J. Z., Yuan, J. Q., & Li, L. (2014). Experimental study on dynamic mechanical behavior of modeled recycled aggregate concrete under uniaxial compression. Journal of Building Structures, 35(3), 201-207. (in Chinese).
- Yassin, M., & Hisham, M. (1994). Nonlinear analysis of prestressed concrete structures under monotonic and cyclic load. PhD Thesis, University of California, Berkeley, CA.
- Zhang, J. W., Cao, W. L., Meng, S. B., Yu, C., & Dong, H. Y. (2014). Shaking table experimental study of recycled concrete frame-shear wall structures. Earthquake Engineering and Engineering Vibration, 13(2), 257-267. https://doi.org/10.1007/s11803-014-0228-y
- Zhou, X. Q., & Hao, H. (2008). Modelling of compressive behaviour of concrete-like materials at high strain rate. International Journal of Solids and Structures, 45, 4648-4661. https://doi.org/10.1016/j.ijsolstr.2008.04.002
- Zielinski, A. J., Reinhardt, H. W., & Kormeling, H. A. (1981). Experiments on concrete under uniaxial impact tensile loading. Materials and Structures, 80(14), 103-112.
Cited by
- Experimental and numerical investigations on seismic responses of reinforced concrete structures considering strain rate effect vol.173, pp.None, 2016, https://doi.org/10.1016/j.conbuildmat.2018.04.085
- Seismic Performance Assessment of RC Frame Structures Subjected to Far-Field and Near-Field Ground Motions Considering Strain Rate Effect vol.18, pp.10, 2018, https://doi.org/10.1142/s0219455418501274
- Dynamic Modified Model for RC Columns Based on Experimental Observations and Bayesian Updating Method vol.145, pp.3, 2019, https://doi.org/10.1061/(asce)em.1943-7889.0001570
- Mechanical Behavior of Recycled Fine Aggregate Concrete with High Slump Property in Normal- and High-Strength vol.13, pp.1, 2016, https://doi.org/10.1186/s40069-019-0372-x
- Numerical analysis of hysteretic behavior for RAC structure under earthquake loading vol.18, pp.4, 2019, https://doi.org/10.1080/13467581.2019.1645671
- Development of Hysteretic Model with Dynamic Effect and Deterioration for Seismic-Performance Analysis of Reinforced Concrete Structures vol.146, pp.10, 2020, https://doi.org/10.1061/(asce)st.1943-541x.0002774
- Experimental Study on Crack Propagation of Concrete Under Various Loading Rates with Digital Image Correlation Method vol.14, pp.1, 2016, https://doi.org/10.1186/s40069-020-00400-5
- Rate sensitivity analysis of structural behaviors of recycled aggregate concrete frame vol.45, pp.None, 2016, https://doi.org/10.1016/j.jobe.2021.103634