DOI QR코드

DOI QR Code

Effects of Silica Fume Content and Polymer-Binder Ratio on Properties of Ultrarapid-Hardening Polymer-Modified Mortars

  • 투고 : 2015.09.23
  • 심사 : 2016.03.03
  • 발행 : 2016.06.30

초록

This paper deals with the effects of silica fume content and polymer-binder ratio on the properties of ultrarapid-hardening polymer-modified mortar using silica fume and ethylene-vinyl acetate redispersible polymer powder instead of styrene-butadiene rubber latex to shorten the hardening time. The ultrarapid-hardening polymer-modified mortar was prepared with various silica fume contents and polymer-binder ratios, and tested flexural strength, compressive strength, water absorption, carbonation depth and chloride ion penetration depth. As results, the flexural, compressive and adhesion strengths of the ultrarapid-hardening polymer-modified mortar tended to increase as increasing polymer-binder ratio, and reached the maximums at 4 % of silica fume content. The water absorption, carbonation and chloride ion penetration resistance were improved according to silica fume content and polymer-binder ratio.

키워드

참고문헌

  1. Bhanjaa, S., & Sengupta, B. (2003). Modified water–cement ratio law for silica fume concretes. Cement and Concrete Research, 33(3), 447-450. https://doi.org/10.1016/S0008-8846(02)00977-8
  2. Bhikshma, V., Nitturkar, K., & Venkatesham, Y. (2009). Investigations on mechanical properties of high strength silica fume concrete. Asian Journal of Civil Engineering Building and Housing, 10(3), 335-346.
  3. Biswal, K. C. & Sadang, S. C. (2010). Effect of superplasticizer and silica fume on properties of concrete. Proceedings of International Conference on Advances in Civil Engineering.
  4. Chan, S. Y. N., & Ji, X. (1998). Water sorptivity and chloride diffusivity of oil shale ash concrete. Construction and Building Materials, 12, 177-183. https://doi.org/10.1016/S0950-0618(98)00006-3
  5. Gutierrez, R. M. D., Diaz, L. N., & Delvasto, S. (2005). Effect of pozzolans on the performance of fibrereinforced mortars. Cement and Concrete Composites, 27(5), 593-598. https://doi.org/10.1016/j.cemconcomp.2004.09.010
  6. Hwang, E. H., & Ko, Y. S. (2008). Comparison of mechanical and physical properties of SBR-polymer modified mortars using recycled waste materials. Journal of Industrial and Engineering Chemistry, 14, 644-650. https://doi.org/10.1016/j.jiec.2008.02.009
  7. Hwang, E. H., Ko, Y. S., & Jeon, J. K. (2008). Effect of polymer cement modifiers on mechanical and physical properties of polymer-modified mortar using recycled artificial marble waste fine aggregate. Journal of Industrial and Engineering Chemistry, 14, 265-271. https://doi.org/10.1016/j.jiec.2007.11.002
  8. Jo, Y. K. (2009). A study on the water permeability and dry shrinkage of polymer cement composites. Journal of the Korea Institute of Building Construction, 9(5), 73-79 (in Korean). https://doi.org/10.5345/JKIC.2009.9.3.073
  9. Jo, Y. K., & Kim, W. K. (2011). Strengths of rapidly hardening SBR cement mortars as building construction materials according to admixture types and curing conditions. Journal of the Korea Institute of Building Construction, 11(6), 587-596 (in Korean). https://doi.org/10.5345/JKIBC.2011.11.6.587
  10. Katkhuda, H., Hanayneh, B., & Shatarat, N. (2009). Influence of silica fume on high strength of light weight concrete. World Academy of Science, Engineering and Technology, 58, 781-788.
  11. Lho, B. C., Joo, M. G., Choi, J. Y., & Choi, K. H. (2010). Properties of ultrarapid-hardening polymer-modified concrete with fibercontent. Proceeding of Fracture Mechanics of Concrete and Concrete Structure, 7, 1368-1373.
  12. McGrath PF, Hooton RD. (1997). Influence of binder composition on chloride penetration resistance of concrete. Proceedings of CANMET/ACI international conference on durability of concrete (pp. 331-347).
  13. Muller, I. L. (2004). Influence of silica fume addition on concretes physical properties and on corrosion behaviour of reinforcement bars. Cement and Concrete Composites, 26(1), 31-39. https://doi.org/10.1016/S0958-9465(02)00120-8
  14. Ohama, Y. (1995). Handbook of polymer-modified concrete and mortars. New York, NY: Noyes Publications.
  15. Ohama, Y. (2006). Recent trends in research and development of polymer-modified mortar and concrete in japan. Proceedings of the 5th Asian Symposium on Polymers in Concrete (Vol. 1, pp. 3-11).
  16. Ohama,Y., & Demura, K. (2010). Concrete-polymer composies-the past and futrre. Proceedings of the 13th International Congress on Polymers in concretes (pp. 1-13).
  17. Rossignolo, J. A. (2009). Interfacial interactions in concretes with silica fume and SBR latex. Construction and Building Materials, 23(2), 817-821. https://doi.org/10.1016/j.conbuildmat.2008.03.005
  18. Rozenbaum, O., Pellenq, R. J. M., & Van Damme, H. (2005). An experimental and mesocopic lattice simulation study of styrene-butadiene latex-cement composites properties. Materials and Structures, 38(4), 467-478. https://doi.org/10.1007/BF02482143
  19. Saraswathy, V., & Kwon, S. J. (2015). Durability performance evaluation on early-aged concrete with rice husk ash and silica. Journal of the Korea Concrete Institute, 27(4), 343-351. https://doi.org/10.4334/JKCI.2015.27.4.343
  20. Shafieyzadeh, M. (2013). Prediction Compressive strength of concretes containing silica fume and styrene-butadiene rubber (SBR) with a mathematical model. International Journal of Concrete Structures and Materials, 7(4), 295-301. https://doi.org/10.1007/s40069-013-0055-y
  21. Song, H. W., Jang, J. C., Sarawathy, V., & Byun, K. J. (2007). An estimation of the diffusivity of silica fume concrete. Building and Environment, 42, 1358-1367. https://doi.org/10.1016/j.buildenv.2005.11.019
  22. Song, H. W., Park, S. W., Nam, S. H., Jang, J. C., & Sarawathy, V. (2010). Estimation of the permeability of silica fume cement concrete. Construction and Building Materials, 24, 315-321. https://doi.org/10.1016/j.conbuildmat.2009.08.033
  23. Wang, R., & Wang, P. M. (2011). Action of redispersible vinyl acetate and versatate copolymer powder in cement mortar. Construction and Building Materials, 25, 4210-4214. https://doi.org/10.1016/j.conbuildmat.2011.04.060
  24. Wang, R., Wang, P. M., & Li, X. G. (2005). Physical and mechanical properties of styrene-butadiene rubber emulsion modified cement mortars. Cement and Concrete Research, 35(5), 900-906. https://doi.org/10.1016/j.cemconres.2004.07.012
  25. Yun, K. K., Hong, C. W., Lee, J. H., & Choi, S. S. (2002). Strength development and permeability of latex-modified concrete with rapid-setting cement. Joural of Korea Concrete Institute, 14(3), 299-306 (in Korean). https://doi.org/10.4334/JKCI.2002.14.3.299
  26. Zhu, H., Wang, P. M., Wang, R., & Zhang, G. F. (2014). Effects of two redispersible polymer powders on efflorescence of portland cement-based decorative mortar. Materials Science (Medziagotyra), 20(3), 345-350.

피인용 문헌

  1. The Erosion of Reinforced Concrete Walls by the Flow of Rainwater vol.11, pp.1, 2016, https://doi.org/10.1007/s40069-016-0177-0
  2. Experimental study on the bond and durability properties of mortar incorporating polyacrylic ester and silica fume vol.30, pp.2, 2018, https://doi.org/10.1680/jadcr.17.00053
  3. Durability of Latex Modified Concrete Mixed with a Shrinkage Reducing Agent for Bridge Deck Pavement vol.12, pp.1, 2016, https://doi.org/10.1186/s40069-018-0261-8
  4. Effects of Redispersible Polymer Powder on Mechanical and Durability Properties of Preplaced Aggregate Concrete with Recycled Railway Ballast vol.12, pp.1, 2016, https://doi.org/10.1186/s40069-018-0304-1
  5. Effect of recycled glass powder on properties of cementitious materials contains styrene butadiene rubber vol.12, pp.2, 2016, https://doi.org/10.1007/s12517-018-4212-0