DOI QR코드

DOI QR Code

The Use of Advanced Optical Measurement Methods for the Mechanical Analysis of Shear Deficient Prestressed Concrete Members

  • Wilder, K. De (Department of Civil Engineering, Building Materials and Building Technology Section, KU Leuven) ;
  • Roeck, G. De (Department of Civil Engineering, Strucutral Mechanics Section, KU Leuven) ;
  • Vandewalle, L. (Department of Civil Engineering, Building Materials and Building Technology Section, KU Leuven)
  • Received : 2015.11.24
  • Accepted : 2016.02.26
  • Published : 2016.06.30

Abstract

This paper investigates on the use of advanced optical measurement methods, i.e. 3D coordinate measurement machines (3D CMM) and stereo-vision digital image correlation (3D DIC), for the mechanical analysis of shear deficient prestressed concrete members. Firstly, the experimental program is elaborated. Secondly, the working principle, experimental setup and corresponding accuracy and precision of the considered optical measurement techniques are reported. A novel way to apply synthesised strain sensor patterns for DIC is introduced. Thirdly, the experimental results are reported and an analysis is made of the structural behaviour based on the gathered experimental data. Both techniques yielded useful and complete data in comparison to traditional mechanical measurement techniques and allowed for the assessment of the mechanical behaviour of the reported test specimens. The identified structural behaviour presented in this paper can be used to optimize design procedure for shear-critical structural concrete members.

Keywords

References

  1. American Concrete Institute. (2011). Aci 318-11 building code requirements for structural concrete and commentary.
  2. Balazs, G. L. (2010). A historical review of shear. In V. Sigrist, F. Minelli, G. Plizzari, & S. Foster (Eds.), Bulletin 57: Shear and punching shear in RC and FRC elements (pp. 1-13). Lausanne, Switzerland: Federation Internationale du Beton (fib).
  3. Bossuyt, S. (2012). Optimized patterns for digital image correlation. In Proceedings of the SEM International Conference and Exposition on Experimental and Applied Mechanics, volume 3: Imaging Methods for Novel Materials and Challenging Applications, Costa Mesa, CA, USA, Society for Experimental Mechanics.
  4. Bureau for Standardisation NBN. (2009a). Nbn en 12390-3.
  5. Bureau for Standardisation NBN. (2009b). Nbn en 12390-5.
  6. Bureau for Standardisation NBN. (2010). Nbn en 1992-1-1 anb.
  7. Bureau for Standardisation NBN. (2014). Nbn en 12390-13.
  8. Burg, J., Peeters, K., Natsakis, T., Dereymaeker, G., Vander Sloten, J., & Jonkers, I. (2013). In vitro analysis of muscle activity illustrates mediolateral decoupling of hind and mid foot bone motion. Gait and Posture, 38(1), 56-61. https://doi.org/10.1016/j.gaitpost.2012.10.014
  9. Canadian Standards Association. (2004). Csa a23.3 design of concrete structures (csa a23.3-04), 2004.
  10. Collins, M. P. (2010). Improving analytical models for shear design and evaluation of reinforced concrete structures. In V. Sigrist, F. Minelli, G. Plizzari, & S. Foster (Eds.), Bulletin 57: Shear and punching shear in RC and FRC elements (pp. 77-92). Lausanne, Switzerland: Federation Internationale du Beton (fib).
  11. Cooreman, S., Debruyne, D., Coppieters, S., Lecompte, D., & Sol, H. (2008). Identification of the mechanical material parameters through inverse modelling (pp. 337-342). Non-Destructive Testing: Emerging Technologies in.
  12. Cooreman, S., Lecompte, D., Sol, H., Vantomme, J., & Debruyne, D. (2007). Elasto-plastic material parameter identification by inverse methods: Calculation of the sensitivity matrix. International Journal of Solids and Structures, 44(13), 4329-4341. https://doi.org/10.1016/j.ijsolstr.2006.11.024
  13. De Roeck, G., Wens, L., & Jacobs, S. (2004). 3d static and dynamic displacement measurements by a system of three linear ccd-units. In P. Sas & M. De Munck (Eds.), International Conference on Noise and Vibration Engineering (ISMA) (pp. 2289-2300), Leuven, Belgium: KU Leuven.
  14. Deconinck, F., Desmet, W., & Sas, P. (2004). Increasing the accuracy of mdof road reproduction experiments: Calibration, tuning and a modified twr approach. In P. Sas & M. De Munck (Eds.), International Conference on Noise and Vibration Engineering (ISMA) (pp. 709-722), Leuven, Belgium: KU Leuven.
  15. Destrycker, M. (2012). Experimental validation of residual stress simulations in welded steel tubes with digital image correlation. PhD thesis, KU Leuven, Department of Civil Engineering.
  16. European Committee for Standardization (CEN). (2004). Eurocode 2: Design of concrete structures-part 1-1: General rules and rules for buildings.
  17. Federation Internationale du Beton (fib). (2010). Shear and punching shear in RC and FRC elements-Workshop 15-16 October 2010, Salo (Italy), volume 57 of Bulletin, Lausanne (Switzerland).
  18. Ivanov, D., Ivanov, S., Lomov, S., & Verpoest, I. (2009). Strain mapping analysis of textile composites. Optics and Lasers in Engineering, 47(3-4), 360-370. https://doi.org/10.1016/j.optlaseng.2008.05.013
  19. Jeong, J.-P., & Kim, W. (2014). Shear resistant mechanism into base components: Beam action and arch action in shear-critical rc members. International Journal of Concrete Structures and Materials, 8(1), 1-14. https://doi.org/10.1007/s40069-013-0064-x
  20. Knauss, W. G., Chasiotis, I., & Huang, Y. (2003). Mechanical measurements at the micron and nanometer scales. Mechanics of Materials, 35(3–6), 217-231. https://doi.org/10.1016/S0167-6636(02)00271-5
  21. Lantsoght, E., van der Veen, C., Walraven, J., & de Boer, A. (2013). Shear assessment of reinforced concrete slab bridges. Structural Engineering International, 4, 418-426.
  22. Lava, P., Cooreman, S., Coppieters, S., De Strycker, M., & Debruyne, D. (2009). Assessment of measuring errors in dic using deformation fields generated by plastic fea. Optics and Lasers in Engineering, 47(7–8), 747-753. https://doi.org/10.1016/j.optlaseng.2009.03.007
  23. Lava, P., Cooreman, S., & Debruyne, D. (2010). Study of systematic errors in strain fields obtained via dic using heterogeneous deformation generated by plastic fea. Optics and Lasers in Engineering, 48(4), 457-468. https://doi.org/10.1016/j.optlaseng.2009.08.013
  24. Lava, P., Coppieters, S., Wang, Y., Van Houtte, P., & Debruyne, D. (2011). Error estimation in measuring strain fields with dic on planar sheet metal specimens with a non-perpendicular camera alignment. Optics and Lasers in Engineering, 49(1), 57-65. https://doi.org/10.1016/j.optlaseng.2010.08.017
  25. Lecompte, D. (2007). Elasto-Plastic material parameter identification by inverse modeling of static tests using digital image correlation. PhD thesis, Vrije Universiteit Brussel, Department of Mechanics of Materials and Constructions.
  26. Muller, H., Breiner, R., Anders, I., Mechterine, V., Curbach, M., Speck, K., et al. (2013). Code-type models for concrete bahviour (Vol. 70)., Bulletin Lausanne, Switzerland: Federation Internationale du Beton.
  27. Nakamura, E., Avendano, A. R., & Bayrak, O. (2013). Shear database for prestressed concrete members. ACI Structural Journal, 110(6), 909-918.
  28. Ramirez, J. A., et al. (1998). Recent approaches to shear design of structural concrete. Journal of Structural Engineering-Asce, 124(12), 1375-1417. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:12(1375)
  29. Sas, G., Blanksvard, T., Enochsson, O., Taljsten, B., & Elfgren, L. (2012). Photographic strain monitoring during full-scale failure testing of ornskoldsvik bridge. Structural Health Monitoring-an International Journal, 11(4), 489-498. https://doi.org/10.1177/1475921712438568
  30. Srikar, G., Anand, G., & Suriya Prakash, S. (2016). A study on residual compression behavior of structural fiber reinforced concrete exposed to moderate temperature using digital image correlation. International Journal of Concrete Structures and Materials, pp. 1-11.
  31. Sun, S. (2007). Shear behavior and capacity of large-scale prestressed high-strength concrete bulb-tee girders. PhD thesis, University of Illinois at Urbana-Champaign, Department of Civil and Environmental Engineering.
  32. Sutton, M. A., Orteu, J. J., & Schreier, H. W. (2009). Image correlation for shape, motion and deformation measurements: basic concepts, theory and applications. New York, NY: Springer.
  33. Valerio, P., Ibell, T., & Darby, A. P. (2011). Shear assessment of prestressed concrete bridges. Proceedings of the Institution of Civil Engineers-Bridge Engineering, 164(4), 195-210.
  34. Van Paepegem, W., Shulev, A. A., Roussev, I. R., De Pauw, S., Degrieck, J., & Sainov, V. C. (2009). Study of the deformation characteristics of window security film by digital image correlation techniques. Optics and Lasers in Engineering, 47(3-4), 390-397. https://doi.org/10.1016/j.optlaseng.2008.03.005
  35. Wang, Y., Lava, P., Debruyne, D., & Van Houtte, P. (2011). Error estimation of dic for heterogeneous strain states. Advances in Experimental Mechanics VIII, 70, 177-182.

Cited by

  1. Modified Disk-Shaped Compact Tension Test for Measuring Concrete Fracture Properties vol.11, pp.2, 2017, https://doi.org/10.1007/s40069-017-0189-4
  2. Nondestructive Assessment of Elastomeric Bridge Bearings Using 3D Digital Image Correlation vol.148, pp.1, 2016, https://doi.org/10.1061/(asce)st.1943-541x.0003200