DOI QR코드

DOI QR Code

Shear Tests for Ultra-High Performance Fiber Reinforced Concrete (UHPFRC) Beams with Shear Reinforcement

  • Lim, Woo-Young (Institute of Engineering Research, Seoul National University) ;
  • Hong, Sung-Gul (Department of Architecture and Architectural Engineering, Seoul National University)
  • 투고 : 2016.03.17
  • 심사 : 2016.04.26
  • 발행 : 2016.06.30

초록

One of the primary concerns about the design aspects is that how to deal with the shear reinforcement in the ultra-high performance fiber reinforced concrete (UHPFRC) beam. This study aims to investigate the shear behavior of UHPFRC rectangular cross sectional beams with fiber volume fraction of 1.5 % considering a spacing of shear reinforcement. Shear tests for simply supported UHPFRC beams were performed. Test results showed that the steel fibers substantially improved of the shear resistance of the UHPFRC beams. Also, shear reinforcement had a synergetic effect on enhancement of ductility. Even though the spacing of shear reinforcement exceeds the spacing limit recommended by current design codes (ACI 318-14), shear strength of UHPFRC beam was noticeably greater than current design codes. Therefore, the spacing limit of 0.75d can be allowed for UHPFRC beams.

키워드

참고문헌

  1. ACI Committee 318. (2014). Building Code Requirements for Structural Concrete (ACI 318M-14) and Commentary (318R-14). Farmington Hills, MI: American Concrete Institute.
  2. ACI Committee 544. (1988). Design considerations for steel fiber reinforced concrete. ACI Structural Journal, 85(5), 1-18.
  3. Alaee, F. J., & Karihaloo, B. L. (2003). Retrofitting of reinforced-concrete beams with CARDIFRC. Journal of Composites for Construction ASCE, 7(3), 174-186. https://doi.org/10.1061/(ASCE)1090-0268(2003)7:3(174)
  4. American Association of State Highway and Transportation Officials. (2004). AASHTO LRFD Bridge Design Specification (3rd ed.). Washington, DC: AASHTO.
  5. Ashour, S. A., Hasanain, G. S., & Wafa, F. F. (1992). Shear behavior of high-strength fiber reinforced concrete beams. ACI Structural Journal, 89(2), 176-184.
  6. Association Francaise du Genil Civil (AFGC). (2013). Betons fibres aultra-hautes performances, Association Francaise du Genil Civil.
  7. ASTM A370-14. (2014). Standard test methods and definitions for mechanical testing of steel products. West Conshohocken, PA: ASTM International.
  8. ASTM C39/C39M-05. (2005). Standard test method for compressive strength of cylindrical concrete specimens. West Conshohocken, PA: ASTM International.
  9. Baby, F., Marchand, P., & Toutlemonde, F. (2014). Shear behavior of ultrahigh performance fiber-reinforced concrete beams. I: Experimental investigation. Journal of Structural Engineering ASCE, 140(5), 04013111. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000907
  10. CSA A23.3-04. (2004). Design of concrete structures. Rexdale, ON: Canadian Standard Association.
  11. EN 1992-1-1. (2004). Eurocode 2: Design of Concrete Structures-Part 1-1: General Rules and Rules for Buildings. British Standards Institution.
  12. Ezeldin, S., & Balaguru, P. N. (1997). Normal- and high-strength fiber-reinforced concrete under compression. ACI Material Journal, 94(4), 286-290.
  13. Fanella, D. A., & Naaman, A. E. (1985). Stress-strain properties of fiber reinforced mortar in compression. ACI Journal, 82(4), 475-483.
  14. Farhat, F. A., Nicolaides, D., Kanellopoulos, A., & Karihaloo, B. L. (2007). High performance fiber-reinforced cementitious composite (CARDIFRC)-performance and application to retrofitting. Engineering Fracture Mechanics, 74, 151-167. https://doi.org/10.1016/j.engfracmech.2006.01.023
  15. Japan Society of Civil Engineers (JSCE). (2004). Recommendations for Design and Construction of Ultra-High Strength Fiber Reinforced Concrete Structures, draft.
  16. Khuntia, M., Stojadinovic, B., & Goel, S. C. (1999). Shear strength of normal and high-strength fiber reinforced concrete beams without stirrups. ACI Structural Journal, 96(2), 282-289.
  17. Korea Concrete Institute. (2012). Design recommendations for ultra-high performance concrete (K-UHPC), KCI-M-12-003, Korea (in Korean).
  18. Kwak, Y. K., Eberhard, M. O., Kim, W. S., & Kim, J. B. (2002). Shear strength of steel fiber-reinforced concrete beams without stirrups. ACI Structural Journal, 99(4), 530-538.
  19. Li, V. C., Ward, R., & Hamza, A. M. (1992). Steel and synthetic fibers as shear reinforcement. ACI Materials Journal, 89(5), 499-508.
  20. Mansur, M. A., Ong, K. C. G., & Paramsivam, P. (1986). Shear strength of fibrous concrete beams without stirrups. Journal of Structural Engineering ASCE, 112(9), 2066-2079. https://doi.org/10.1061/(ASCE)0733-9445(1986)112:9(2066)
  21. MC2010. (2012). fib Model Code for Concrete Structures 2010, federation internationale du beton, Lausanne, Switzerland: Ernst & Sohn.
  22. Meda, A., Mostosi, S., & Riva, P. (2014). Sehar strengthening of reinforced concrete beam with high-performance fiber-reinforced cementitious composite jacketing. ACI Structural Journal, 111(5), 1059-1067.
  23. Narayanan, R., & Darwish, I. Y. S. (1987). Use of steel fibers as shear reinforcement. ACI Structural Journal, 84(3), 216-227.
  24. Noghabai, K. (2000). Beams of fibrous concrete in shear and bending: Experiment and model. Journal of Structural Engineering ASCE, 126(2), 243-251. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:2(243)
  25. Pan, A., & Moehle, J. P. (1989). Lateral displacement ductility of reinforced concrete flat plates. ACI Structural Journal, 86(3), 250-258.
  26. Park, S. H., Kim, D. J., Ryu, G. S., & Koh, K. T. (2012). Tensile Behavior of ultra high performance hybrid fiber reinforced concrete. Cement and Concrete Composites, 34, 172-184. https://doi.org/10.1016/j.cemconcomp.2011.09.009
  27. Parra-Montesinos, G. J. (2006). Shear strength of beams with deformed steel fibers. Concrete International, 28(11), 57-66.
  28. Rossi, P., Arca, A., Parant, E., & Fakhri, P. (2005). Bending and compressive behaviors of a new cement composite. Cement and Concrete Research, 35, 27-33. https://doi.org/10.1016/j.cemconres.2004.05.043
  29. Sharma, A. K. (1986). Shear strength of steel fiber reinforced concrete beams. ACI Journal, 83(4), 624-628.
  30. Voo, Y. L., Poon, W. K., & Foster, S. J. (2010). Sheear strength of steel fiber-reinforced ultrahigh-performance concrete beams without stirrups. Journal of Structural Engineering ASCE, 136(11), 1393-1400. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000234
  31. Wafa, F. F., & Ashour, S. A. (1992). Mechanical properties of high-strength fiber reinforced concrete. ACI Materials Journal, 89(5), 440-455.
  32. Wille, K., Kim, D. J., & Naaman, A. E. (2011a). Strain hardening UHP-FRC with low fiber contents. Materials and Structures, 44, 583-598. https://doi.org/10.1617/s11527-010-9650-4
  33. Wille, K., Naaman, A. E., & Parra-Montesinos, G. J. (2011b). Ultra-high performance concrete with compressive strength exceeding 150 MPa (22 ksi): A simpler way. ACI Materials Journal, 108(6), 46-54.

피인용 문헌

  1. Pull-Out Behaviour of Hooked End Steel Fibres Embedded in Ultra-high Performance Mortar with Various W/B Ratios vol.11, pp.2, 2016, https://doi.org/10.1007/s40069-017-0193-8
  2. Experiments on Tensile and Shear Characteristics of Amorphous Micro Steel (AMS) Fibre-Reinforced Cementitious Composites vol.11, pp.4, 2016, https://doi.org/10.1007/s40069-017-0214-7
  3. Headed bars in simulated exterior beam-column joints of UHPFRC vol.70, pp.19, 2016, https://doi.org/10.1680/jmacr.17.00355
  4. Structural Behavior of RC Beams Containing a Pre- Diagonal Tension Crack vol.15, pp.7, 2016, https://doi.org/10.1590/1679-78254701
  5. Shear behavior of fiber-reinforced ultra-high performance concrete beams vol.168, pp.None, 2018, https://doi.org/10.1016/j.engstruct.2018.04.075
  6. Experimental Study on Shear Behavior of Steel Fiber Reinforced Concrete Beams with High-Strength Reinforcement vol.11, pp.9, 2016, https://doi.org/10.3390/ma11091682
  7. Analysis of Failure Mechanics in Hybrid Fibre-Reinforced High-Performance Concrete Deep Beams with and without Openings vol.12, pp.1, 2016, https://doi.org/10.3390/ma12010101
  8. Shear strength of steel-fibre-reinforced concrete beams with web reinforcement vol.172, pp.4, 2016, https://doi.org/10.1680/jstbu.17.00115
  9. Effective fiber type investigation on the shear behavior of ultrahigh-performance fiber-reinforced concrete beams vol.22, pp.7, 2019, https://doi.org/10.1177/1369433218820788
  10. Shear strength of fiber-reinforced high-strength steel ultra-high-performance concrete beams based on refined calculation of compression zone depth considering concrete tension vol.22, pp.8, 2016, https://doi.org/10.1177/1369433219829805
  11. Shear performance of an innovative UHPFRC deck of composite bridge with coarse aggregate vol.7, pp.4, 2019, https://doi.org/10.12989/acc.2019.7.4.219
  12. Experimental Study of High-Strength Concrete-Steel Plate Composite Shear Walls vol.9, pp.14, 2016, https://doi.org/10.3390/app9142820
  13. Steel Fiber Use as Shear Reinforcement on I-Shaped UHP-FRC Beams vol.9, pp.24, 2016, https://doi.org/10.3390/app9245526
  14. Impact of Reinforcement Ratio on Shear Behavior of I-Shaped UHPC Beams with and without Fiber Shear Reinforcement vol.13, pp.7, 2020, https://doi.org/10.3390/ma13071525
  15. Shear strength prediction for SFRC and UHPC beams using a Bayesian approach vol.74, pp.4, 2016, https://doi.org/10.12989/sem.2020.74.4.503
  16. Shear strength and deformation of steel fibre-reinforced concrete beams after fire vol.10, pp.2, 2020, https://doi.org/10.12989/acc.2020.10.2.105
  17. Flexural performance of highly reinforced composite beams with ultra-high performance fiber reinforced concrete layer vol.219, pp.None, 2016, https://doi.org/10.1016/j.engstruct.2020.110722
  18. Machine learning framework for predicting failure mode and shear capacity of ultra high performance concrete beams vol.224, pp.None, 2016, https://doi.org/10.1016/j.engstruct.2020.111221
  19. Mechanical performance of CFRP enclosed reinforced concrete beams by different shear reinforcement vol.24, pp.7, 2016, https://doi.org/10.1177/1369433220974784
  20. Finite Element Analysis of Structural Behavior of Sliding-Type Blast-Resistant Doors Based on Blast Loading Conditions vol.21, pp.4, 2016, https://doi.org/10.9798/kosham.2021.21.4.139
  21. A Review of Developments and Challenges for UHPC in Structural Engineering: Behavior, Analysis, and Design vol.147, pp.9, 2016, https://doi.org/10.1061/(asce)st.1943-541x.0003073
  22. Experimental investigations on the shear bearing behavior of prestressed ultra‐high performance fiber‐reinforced concrete beams with compact CROSS‐SECTION vol.22, pp.6, 2016, https://doi.org/10.1002/suco.202100337