참고문헌
- ACI Committee 318. (2014). Building Code Requirements for Structural Concrete (ACI 318M-14) and Commentary (318R-14). Farmington Hills, MI: American Concrete Institute.
- ACI Committee 544. (1988). Design considerations for steel fiber reinforced concrete. ACI Structural Journal, 85(5), 1-18.
- Alaee, F. J., & Karihaloo, B. L. (2003). Retrofitting of reinforced-concrete beams with CARDIFRC. Journal of Composites for Construction ASCE, 7(3), 174-186. https://doi.org/10.1061/(ASCE)1090-0268(2003)7:3(174)
- American Association of State Highway and Transportation Officials. (2004). AASHTO LRFD Bridge Design Specification (3rd ed.). Washington, DC: AASHTO.
- Ashour, S. A., Hasanain, G. S., & Wafa, F. F. (1992). Shear behavior of high-strength fiber reinforced concrete beams. ACI Structural Journal, 89(2), 176-184.
- Association Francaise du Genil Civil (AFGC). (2013). Betons fibres aultra-hautes performances, Association Francaise du Genil Civil.
- ASTM A370-14. (2014). Standard test methods and definitions for mechanical testing of steel products. West Conshohocken, PA: ASTM International.
- ASTM C39/C39M-05. (2005). Standard test method for compressive strength of cylindrical concrete specimens. West Conshohocken, PA: ASTM International.
- Baby, F., Marchand, P., & Toutlemonde, F. (2014). Shear behavior of ultrahigh performance fiber-reinforced concrete beams. I: Experimental investigation. Journal of Structural Engineering ASCE, 140(5), 04013111. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000907
- CSA A23.3-04. (2004). Design of concrete structures. Rexdale, ON: Canadian Standard Association.
- EN 1992-1-1. (2004). Eurocode 2: Design of Concrete Structures-Part 1-1: General Rules and Rules for Buildings. British Standards Institution.
- Ezeldin, S., & Balaguru, P. N. (1997). Normal- and high-strength fiber-reinforced concrete under compression. ACI Material Journal, 94(4), 286-290.
- Fanella, D. A., & Naaman, A. E. (1985). Stress-strain properties of fiber reinforced mortar in compression. ACI Journal, 82(4), 475-483.
- Farhat, F. A., Nicolaides, D., Kanellopoulos, A., & Karihaloo, B. L. (2007). High performance fiber-reinforced cementitious composite (CARDIFRC)-performance and application to retrofitting. Engineering Fracture Mechanics, 74, 151-167. https://doi.org/10.1016/j.engfracmech.2006.01.023
- Japan Society of Civil Engineers (JSCE). (2004). Recommendations for Design and Construction of Ultra-High Strength Fiber Reinforced Concrete Structures, draft.
- Khuntia, M., Stojadinovic, B., & Goel, S. C. (1999). Shear strength of normal and high-strength fiber reinforced concrete beams without stirrups. ACI Structural Journal, 96(2), 282-289.
- Korea Concrete Institute. (2012). Design recommendations for ultra-high performance concrete (K-UHPC), KCI-M-12-003, Korea (in Korean).
- Kwak, Y. K., Eberhard, M. O., Kim, W. S., & Kim, J. B. (2002). Shear strength of steel fiber-reinforced concrete beams without stirrups. ACI Structural Journal, 99(4), 530-538.
- Li, V. C., Ward, R., & Hamza, A. M. (1992). Steel and synthetic fibers as shear reinforcement. ACI Materials Journal, 89(5), 499-508.
- Mansur, M. A., Ong, K. C. G., & Paramsivam, P. (1986). Shear strength of fibrous concrete beams without stirrups. Journal of Structural Engineering ASCE, 112(9), 2066-2079. https://doi.org/10.1061/(ASCE)0733-9445(1986)112:9(2066)
- MC2010. (2012). fib Model Code for Concrete Structures 2010, federation internationale du beton, Lausanne, Switzerland: Ernst & Sohn.
- Meda, A., Mostosi, S., & Riva, P. (2014). Sehar strengthening of reinforced concrete beam with high-performance fiber-reinforced cementitious composite jacketing. ACI Structural Journal, 111(5), 1059-1067.
- Narayanan, R., & Darwish, I. Y. S. (1987). Use of steel fibers as shear reinforcement. ACI Structural Journal, 84(3), 216-227.
- Noghabai, K. (2000). Beams of fibrous concrete in shear and bending: Experiment and model. Journal of Structural Engineering ASCE, 126(2), 243-251. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:2(243)
- Pan, A., & Moehle, J. P. (1989). Lateral displacement ductility of reinforced concrete flat plates. ACI Structural Journal, 86(3), 250-258.
- Park, S. H., Kim, D. J., Ryu, G. S., & Koh, K. T. (2012). Tensile Behavior of ultra high performance hybrid fiber reinforced concrete. Cement and Concrete Composites, 34, 172-184. https://doi.org/10.1016/j.cemconcomp.2011.09.009
- Parra-Montesinos, G. J. (2006). Shear strength of beams with deformed steel fibers. Concrete International, 28(11), 57-66.
- Rossi, P., Arca, A., Parant, E., & Fakhri, P. (2005). Bending and compressive behaviors of a new cement composite. Cement and Concrete Research, 35, 27-33. https://doi.org/10.1016/j.cemconres.2004.05.043
- Sharma, A. K. (1986). Shear strength of steel fiber reinforced concrete beams. ACI Journal, 83(4), 624-628.
- Voo, Y. L., Poon, W. K., & Foster, S. J. (2010). Sheear strength of steel fiber-reinforced ultrahigh-performance concrete beams without stirrups. Journal of Structural Engineering ASCE, 136(11), 1393-1400. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000234
- Wafa, F. F., & Ashour, S. A. (1992). Mechanical properties of high-strength fiber reinforced concrete. ACI Materials Journal, 89(5), 440-455.
- Wille, K., Kim, D. J., & Naaman, A. E. (2011a). Strain hardening UHP-FRC with low fiber contents. Materials and Structures, 44, 583-598. https://doi.org/10.1617/s11527-010-9650-4
- Wille, K., Naaman, A. E., & Parra-Montesinos, G. J. (2011b). Ultra-high performance concrete with compressive strength exceeding 150 MPa (22 ksi): A simpler way. ACI Materials Journal, 108(6), 46-54.
피인용 문헌
- Pull-Out Behaviour of Hooked End Steel Fibres Embedded in Ultra-high Performance Mortar with Various W/B Ratios vol.11, pp.2, 2016, https://doi.org/10.1007/s40069-017-0193-8
- Experiments on Tensile and Shear Characteristics of Amorphous Micro Steel (AMS) Fibre-Reinforced Cementitious Composites vol.11, pp.4, 2016, https://doi.org/10.1007/s40069-017-0214-7
- Headed bars in simulated exterior beam-column joints of UHPFRC vol.70, pp.19, 2016, https://doi.org/10.1680/jmacr.17.00355
- Structural Behavior of RC Beams Containing a Pre- Diagonal Tension Crack vol.15, pp.7, 2016, https://doi.org/10.1590/1679-78254701
- Shear behavior of fiber-reinforced ultra-high performance concrete beams vol.168, pp.None, 2018, https://doi.org/10.1016/j.engstruct.2018.04.075
- Experimental Study on Shear Behavior of Steel Fiber Reinforced Concrete Beams with High-Strength Reinforcement vol.11, pp.9, 2016, https://doi.org/10.3390/ma11091682
- Analysis of Failure Mechanics in Hybrid Fibre-Reinforced High-Performance Concrete Deep Beams with and without Openings vol.12, pp.1, 2016, https://doi.org/10.3390/ma12010101
- Shear strength of steel-fibre-reinforced concrete beams with web reinforcement vol.172, pp.4, 2016, https://doi.org/10.1680/jstbu.17.00115
- Effective fiber type investigation on the shear behavior of ultrahigh-performance fiber-reinforced concrete beams vol.22, pp.7, 2019, https://doi.org/10.1177/1369433218820788
- Shear strength of fiber-reinforced high-strength steel ultra-high-performance concrete beams based on refined calculation of compression zone depth considering concrete tension vol.22, pp.8, 2016, https://doi.org/10.1177/1369433219829805
- Shear performance of an innovative UHPFRC deck of composite bridge with coarse aggregate vol.7, pp.4, 2019, https://doi.org/10.12989/acc.2019.7.4.219
- Experimental Study of High-Strength Concrete-Steel Plate Composite Shear Walls vol.9, pp.14, 2016, https://doi.org/10.3390/app9142820
- Steel Fiber Use as Shear Reinforcement on I-Shaped UHP-FRC Beams vol.9, pp.24, 2016, https://doi.org/10.3390/app9245526
- Impact of Reinforcement Ratio on Shear Behavior of I-Shaped UHPC Beams with and without Fiber Shear Reinforcement vol.13, pp.7, 2020, https://doi.org/10.3390/ma13071525
- Shear strength prediction for SFRC and UHPC beams using a Bayesian approach vol.74, pp.4, 2016, https://doi.org/10.12989/sem.2020.74.4.503
- Shear strength and deformation of steel fibre-reinforced concrete beams after fire vol.10, pp.2, 2020, https://doi.org/10.12989/acc.2020.10.2.105
- Flexural performance of highly reinforced composite beams with ultra-high performance fiber reinforced concrete layer vol.219, pp.None, 2016, https://doi.org/10.1016/j.engstruct.2020.110722
- Machine learning framework for predicting failure mode and shear capacity of ultra high performance concrete beams vol.224, pp.None, 2016, https://doi.org/10.1016/j.engstruct.2020.111221
- Mechanical performance of CFRP enclosed reinforced concrete beams by different shear reinforcement vol.24, pp.7, 2016, https://doi.org/10.1177/1369433220974784
- Finite Element Analysis of Structural Behavior of Sliding-Type Blast-Resistant Doors Based on Blast Loading Conditions vol.21, pp.4, 2016, https://doi.org/10.9798/kosham.2021.21.4.139
- A Review of Developments and Challenges for UHPC in Structural Engineering: Behavior, Analysis, and Design vol.147, pp.9, 2016, https://doi.org/10.1061/(asce)st.1943-541x.0003073
- Experimental investigations on the shear bearing behavior of prestressed ultra‐high performance fiber‐reinforced concrete beams with compact CROSS‐SECTION vol.22, pp.6, 2016, https://doi.org/10.1002/suco.202100337