DOI QR코드

DOI QR Code

Determination of Double-K Fracture Parameters of Concrete Using Split-Tension Cube: A Revised Procedure

  • Pandey, Shashi Ranjan (Department of Civil Engineering, National Institute of Technology) ;
  • Kumar, Shailendra (Department of Civil Engineering, Institute of Technology, Guru Ghasidas Vishwavidyalaya (A Central University)) ;
  • Srivastava, A.K.L. (Department of Civil Engineering, National Institute of Technology)
  • Received : 2015.12.22
  • Accepted : 2016.03.15
  • Published : 2016.06.30

Abstract

This paper presents a revised procedure for computation of double-K fracture parameters of concrete split-tension cube specimen using weight function of the centrally cracked plate of finite strip with a finite width. This is an improvement over the previous work of the authors in which the determination of double-K fracture parameters of concrete for split-tension cube test using weight function of the centrally cracked plate of infinite strip with a finite width was presented. In a recent research, it was pointed out that there are great differences between a finite strip and an infinite strip regarding their weight function and the solution of infinite strip can be utilized in the split-tension specimens when the notch size is very small. In the present work, improved version of LEFM formulas for stress intensity factor, crack mouth opening displacement and crack opening displacement profile presented in the recent research work are incorporated. The results of the double-K fracture parameters obtained using revised procedure and the previous work of the authors is compared. The double-K fracture parameters of split-tension cube specimen are also compared with those obtained for standard three point bend test specimen. The input data required for determining double-K fracture parameters for both the specimen geometries for laboratory size specimens are obtained using well known version of the Fictitious Crack Model.

Keywords

References

  1. Bazant, Z. P., Kim, J.-K., & Pfeiffer, P. A. (1986). Determination of fracture properties from size effect tests. Journal of Structural Engineering ASCE, 112(2), 289-307. https://doi.org/10.1061/(ASCE)0733-9445(1986)112:2(289)
  2. Bazant, Z. P., & Oh, B. H. (1983). Crack band theory for fracture of concrete. Materials and Structures, 16(93), 155-177.
  3. Bueckner, H. F. (1970). A novel principle for the computation of stress intensity factors. Zeitschrift fur Angewandte Mathematik und Mechanik, 50, 529-546.
  4. Carpinteri, A. (1989). Cusp catastrophe interpretation of fracture instability. Journal of the Mechanics and Physics of Solids, 37(5), 567-582. https://doi.org/10.1016/0022-5096(89)90029-X
  5. Choubey, R. K., Kumar, S., & Rao, M. C. (2014). Effect of shear-span/depth ratio on cohesive crack and double-K fracture parameters. International Journal of Construction, 2(3), 229-247.
  6. Cusatis, G., & Schauffert, E. A. (2009). Cohesive crack analysis of size effect. Engineering Fracture Mechanics, 76, 2163-2173. https://doi.org/10.1016/j.engfracmech.2009.06.008
  7. Elices, M., Rocco, C., & Rosello, C. (2009). Cohesive crack modeling of a simple concrete: Experimental and numerical results. Engineering Fracture Mechanics, 76, 1398-1410. https://doi.org/10.1016/j.engfracmech.2008.04.010
  8. Glinka, G., & Shen, G. (1991). Universal features of weight functions for cracks in Mode I. Engineering Fracture Mechanics, 40, 1135-1146. https://doi.org/10.1016/0013-7944(91)90177-3
  9. Hillerborg, A., Modeer, M., & Petersson, P. E. (1976). Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cement and Concrete Research, 6, 773-782. https://doi.org/10.1016/0008-8846(76)90007-7
  10. Hu, S., & Lu, J. (2012). Experimental research and analysis on double-K fracture parameters of concrete. Advanced Science Letters, 12(1), 192-195. https://doi.org/10.1166/asl.2012.2806
  11. Hu, S., Mi, Z., & Lu, J. (2012). Effect of crack-depth ratio on double-K fracture parameters of reinforced concrete. Applied Mechanics and Materials, 226-228, 937-941.
  12. Ince, R. (2010). Determination of concrete fracture parameters based on two-parameter and size effect models using split-tension cubes. Engineering Fracture Mechanics, 77, 2233-2250. https://doi.org/10.1016/j.engfracmech.2010.05.007
  13. Ince, R. (2012). Determination of the fracture parameters of the Double-K model using weight functions of split-tension specimens. Engineering Fracture Mechanics, 96, 416-432. https://doi.org/10.1016/j.engfracmech.2012.08.024
  14. Isida, M. (1971). Effect of width and length on stress intensity factor of internally cracked plates under various boundary conditions. International Journal of Fracture, 7, 301-316.
  15. Jenq, Y. S., & Shah, S. P. (1985). Two parameter fracture model for concrete. Journal of Engineering Mechanics, 111(10), 1227-1241. https://doi.org/10.1061/(ASCE)0733-9399(1985)111:10(1227)
  16. Karihaloo, B. L., & Nallathambi, P. (1991). Notched beam test: Mode I fracture toughness. In S. P. Shah & A. Carpinteri (Eds.), Fracture mechanics test methods for concrete, report of RILEM Technical Committee 89-FMT (pp. 1-86). London, UK: Chamman & Hall.
  17. Kumar, S. (2010). Behavoiur of fracture parameters for crack propagation in concrete. Ph.D. Thesis submitted to Indian Institute of Technology, Kharagpur, India.
  18. Kumar, S., & Barai, S. V. (2008a). Influence of specimen geometry on determination of double-K fracture parameters of concrete: A comparative study. International Journal of Fracture, 149, 47-66. https://doi.org/10.1007/s10704-008-9227-1
  19. Kumar, S., & Barai, S. V. (2008b). Cohesive crack model for the study of nonlinear fracture behaviour of concrete. Journal of the Institution of Engineers (India), 89, 7-15.
  20. Kumar, S., & Barai, S. V. (2009a). Determining double-K fracture parameters of concrete for compact tension and wedge splitting tests using weight function. Engineering Fracture Mechanics, 76, 935-948. https://doi.org/10.1016/j.engfracmech.2008.12.018
  21. Kumar, S., & Barai, S. V. (2009b). Effect of softening function on the cohesive crack fracture parameters of concrete CT specimen. Sadhana-Academy Proceedings in Engineering Sciences, 36(6), 987-1015.
  22. Kumar, S., & Barai, S. V. (2010). Determining the double-K fracture parameters for three-point bending notched concrete beams using weight function. Fatigue & Fracture of Engineering Materials & Structures, 33(10), 645-660. https://doi.org/10.1111/j.1460-2695.2010.01477.x
  23. Kumar, S., & Pandey, S. R. (2012). Determination of double-K fracture parameters of concrete using split-tension cube test. Computers and Concrete, 9(1), 1-19. https://doi.org/10.12989/cac.2012.9.1.001
  24. Kumar, S., Pandey, S. R., & Srivastava, A. K. L. (2013). Analytical methods for determination of double-K fracture parameters of concrete. Advances in Concrete Construction, 1(4), 319-340. https://doi.org/10.12989/acc2013.1.4.319
  25. Kumar, S., Pandey, S. R., & Srivastava, A. K. L. (2014). Determination of double-K fracture parameters of concrete using peak load method. Engineering Fracture Mechanics, 131, 471-484. https://doi.org/10.1016/j.engfracmech.2014.09.004
  26. Kwon, S. H., Zhao, Z., & Shah, S. P. (2008). Effect of specimen size on fracture energy and softening curve of concrete: Part II. Inverse analysis and softening curve. Cement Concrete Res, 38, 1061-1069. https://doi.org/10.1016/j.cemconres.2008.03.014
  27. Lee, J., & Lopez, M. M. (2014). An experimental study on fracture energy of plain concrete. International Journal of Concrete Structures and Materials, 8(2), 129-139. https://doi.org/10.1007/s40069-014-0068-1
  28. Modeer, M. (1979). A fracture mechanics approach to failure analyses of concrete materials. Report TVBM-1001, Division of Building Materials. University of Lund, Sweden.
  29. Murthy, A. R., Iyer, N. R., & Prasad, B. K. R. (2012). Evaluation of fracture parameters by Double-G, Double-K models and crack extension resistance for high strength and ultra high strength concrete beams. Computers Materials & Continua, 31(3), 229-252.
  30. Nallathambi, P., & Karihaloo, B. L. (1986). Determination of specimen-size independent fracture toughness of plain concrete. Magazine of Concrete Research, 135, 67-76.
  31. Park, K., Paulino, G. H., & Roesler, J. R. (2008). Determination of the kink point in the bilinear softening model for concrete. Engineering Fracture Mechanics, 7, 3806-3818.
  32. Petersson, P. E. (1981). Crack growth and development of fracture zone in plain concrete and similar materials. Report No. TVBM-100, Lund Institute of Technology, Sweden.
  33. Planas, J., & Elices, M. (1991). Nonlinear fracture of cohesive material. International Journal of Fracture, 51, 139-157.
  34. Reinhardt, H. W., Cornelissen, H. A. W., & Hordijk, D. A. (1986). Tensile tests and failure analysis of concrete. Journal of Structural Engineering, 112(11), 2462-2477. https://doi.org/10.1061/(ASCE)0733-9445(1986)112:11(2462)
  35. Rice, J. R. (1972). Some remarks on elastic crack-tip stress fields. International Journal of Solids and Structures, 8, 751-758. https://doi.org/10.1016/0020-7683(72)90040-6
  36. RILEM Draft Recommendation (TC50-FMC). (1985). Determination of fracture energy of mortar and concrete by means of three-point bend test on notched beams. Materials and Structures, 18(4), 287-290. https://doi.org/10.1007/BF02472918
  37. Roesler, J., Paulino, G. H., Park, K., & Gaedicke, C. (2007). Concrete fracture prediction using bilinear softening. Cement Concrete Composites, 29, 300-312. https://doi.org/10.1016/j.cemconcomp.2006.12.002
  38. Tada, H., Paris, P. C., & Irwin, G. R. (2000). Stress analysis of cracks handbook (3rd ed.). New York, NY: ASME Press.
  39. Timoshenko, S. P., & Goodier, J. N. (1970). Theory of elasticity (3rd ed.). New York, NY: McGraw Hill.
  40. Wu, Z., Jakubczak, H., Glinka, G., Molski, K., & Nilsson, L. (2003). Determination of stress intensity factors for cracks in complex stress fields. Archive of Mechanical Engineering, 50(1), s41-s67.
  41. Xu, S., & Reinhardt, H. W. (1998). Crack extension resistance and fracture properties of quasi-brittle materials like concrete based on the complete process of fracture. International Journal of Fracture, 92, 71-99. https://doi.org/10.1023/A:1007553012684
  42. Xu, S., & Reinhardt, H. W. (1999a). Determination of double-K criterion for crack propagation in quasi-brittle materials, Part I: Experimental investigation of crack propagation. International Journal of Fracture, 98, 111-149. https://doi.org/10.1023/A:1018668929989
  43. Xu, S., & Reinhardt, H. W. (1999b). Determination of double-K criterion for crack propagation in quasi-brittle materials, Part II: Analytical evaluating and practical measuring methods for three-point bending notched beams. International Journal of Fracture, 98, 151-177. https://doi.org/10.1023/A:1018740728458
  44. Xu, S., & Reinhardt, H. W. (1999c). Determination of double-K criterion for crack propagation in quasi-brittle materials, Part III: Compact tension specimens and wedge splitting specimens. International Journal of Fracture, 98, 179-193. https://doi.org/10.1023/A:1018788611620
  45. Xu, S., & Reinhardt, H. W. (2000). A simplified method for determining double-K fracture meter parameters for three-point bending tests. International Journal of Fracture, 104, 181-209. https://doi.org/10.1023/A:1007676716549
  46. Xu, S.,&Zhang, X. (2008). Determination of fracture parameters for crack propagation in concrete using an energy approach. Engineering Fracture Mechanics, 75, 4292-4308. https://doi.org/10.1016/j.engfracmech.2008.04.022
  47. Xu, S., & Zhu, Y. (2009). Experimental determination of fracture parameters for crack propagation in hardening cement paste and mortar. International Journal of Fracture, 157, 33-43. https://doi.org/10.1007/s10704-009-9315-x
  48. Zhang, X., & Xu, S. (2011). A comparative study on five approaches to evaluate double-K fracture toughness parameters of concrete and size effect analysis. Engineering Fracture Mechanics, 78, 2115-2138. https://doi.org/10.1016/j.engfracmech.2011.03.014
  49. Zhang, X., Xu, S., & Zheng, S. (2007). Experimental measurement of double-K fracture parameters of concrete with small-size aggregates. Frontiers of Architecture and Civil Engineering in China, 1(4), 448-457. https://doi.org/10.1007/s11709-007-0061-8
  50. Zhao, Z., Kwon, S. H., & Shah, S. P. (2008). Effect of specimen size on fracture energy and softening curve of concrete: Part I. Experiments and fracture energy. Cement Concrete Res, 38, 1049-1060. https://doi.org/10.1016/j.cemconres.2008.03.017
  51. Zhao, Y., & Xu, S. (2002). The influence of span/depth ratio on the double-K fracture parameters of concrete. Journal of China Three Gorges University (Natural Sciences), 24(1), 35-41.
  52. Zi, G., & Bazant, Z. P. (2003). Eignvalue method for computing size effect of cohesive cracks with residual stress, with application to kink-bands in composites. International Journal of Engineering Science, 41, 1519-1534. https://doi.org/10.1016/S0020-7225(03)00033-8

Cited by

  1. Modified Disk-Shaped Compact Tension Test for Measuring Concrete Fracture Properties vol.11, pp.2, 2017, https://doi.org/10.1007/s40069-017-0189-4
  2. Results of round-robin testing for determining the double-K fracture parameters for crack propagation in concrete: technical report of the RILEM TC265-TDK vol.54, pp.6, 2016, https://doi.org/10.1617/s11527-021-01788-6
  3. Influential factors for double-K fracture parameters analyzed by the round robin tests of RILEM TC265-TDK vol.54, pp.6, 2016, https://doi.org/10.1617/s11527-021-01791-x