References
- Bazant, Z. P., Kim, J.-K., & Pfeiffer, P. A. (1986). Determination of fracture properties from size effect tests. Journal of Structural Engineering ASCE, 112(2), 289-307. https://doi.org/10.1061/(ASCE)0733-9445(1986)112:2(289)
- Bazant, Z. P., & Oh, B. H. (1983). Crack band theory for fracture of concrete. Materials and Structures, 16(93), 155-177.
- Bueckner, H. F. (1970). A novel principle for the computation of stress intensity factors. Zeitschrift fur Angewandte Mathematik und Mechanik, 50, 529-546.
- Carpinteri, A. (1989). Cusp catastrophe interpretation of fracture instability. Journal of the Mechanics and Physics of Solids, 37(5), 567-582. https://doi.org/10.1016/0022-5096(89)90029-X
- Choubey, R. K., Kumar, S., & Rao, M. C. (2014). Effect of shear-span/depth ratio on cohesive crack and double-K fracture parameters. International Journal of Construction, 2(3), 229-247.
- Cusatis, G., & Schauffert, E. A. (2009). Cohesive crack analysis of size effect. Engineering Fracture Mechanics, 76, 2163-2173. https://doi.org/10.1016/j.engfracmech.2009.06.008
- Elices, M., Rocco, C., & Rosello, C. (2009). Cohesive crack modeling of a simple concrete: Experimental and numerical results. Engineering Fracture Mechanics, 76, 1398-1410. https://doi.org/10.1016/j.engfracmech.2008.04.010
- Glinka, G., & Shen, G. (1991). Universal features of weight functions for cracks in Mode I. Engineering Fracture Mechanics, 40, 1135-1146. https://doi.org/10.1016/0013-7944(91)90177-3
- Hillerborg, A., Modeer, M., & Petersson, P. E. (1976). Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cement and Concrete Research, 6, 773-782. https://doi.org/10.1016/0008-8846(76)90007-7
- Hu, S., & Lu, J. (2012). Experimental research and analysis on double-K fracture parameters of concrete. Advanced Science Letters, 12(1), 192-195. https://doi.org/10.1166/asl.2012.2806
- Hu, S., Mi, Z., & Lu, J. (2012). Effect of crack-depth ratio on double-K fracture parameters of reinforced concrete. Applied Mechanics and Materials, 226-228, 937-941.
- Ince, R. (2010). Determination of concrete fracture parameters based on two-parameter and size effect models using split-tension cubes. Engineering Fracture Mechanics, 77, 2233-2250. https://doi.org/10.1016/j.engfracmech.2010.05.007
- Ince, R. (2012). Determination of the fracture parameters of the Double-K model using weight functions of split-tension specimens. Engineering Fracture Mechanics, 96, 416-432. https://doi.org/10.1016/j.engfracmech.2012.08.024
- Isida, M. (1971). Effect of width and length on stress intensity factor of internally cracked plates under various boundary conditions. International Journal of Fracture, 7, 301-316.
- Jenq, Y. S., & Shah, S. P. (1985). Two parameter fracture model for concrete. Journal of Engineering Mechanics, 111(10), 1227-1241. https://doi.org/10.1061/(ASCE)0733-9399(1985)111:10(1227)
- Karihaloo, B. L., & Nallathambi, P. (1991). Notched beam test: Mode I fracture toughness. In S. P. Shah & A. Carpinteri (Eds.), Fracture mechanics test methods for concrete, report of RILEM Technical Committee 89-FMT (pp. 1-86). London, UK: Chamman & Hall.
- Kumar, S. (2010). Behavoiur of fracture parameters for crack propagation in concrete. Ph.D. Thesis submitted to Indian Institute of Technology, Kharagpur, India.
- Kumar, S., & Barai, S. V. (2008a). Influence of specimen geometry on determination of double-K fracture parameters of concrete: A comparative study. International Journal of Fracture, 149, 47-66. https://doi.org/10.1007/s10704-008-9227-1
- Kumar, S., & Barai, S. V. (2008b). Cohesive crack model for the study of nonlinear fracture behaviour of concrete. Journal of the Institution of Engineers (India), 89, 7-15.
- Kumar, S., & Barai, S. V. (2009a). Determining double-K fracture parameters of concrete for compact tension and wedge splitting tests using weight function. Engineering Fracture Mechanics, 76, 935-948. https://doi.org/10.1016/j.engfracmech.2008.12.018
- Kumar, S., & Barai, S. V. (2009b). Effect of softening function on the cohesive crack fracture parameters of concrete CT specimen. Sadhana-Academy Proceedings in Engineering Sciences, 36(6), 987-1015.
- Kumar, S., & Barai, S. V. (2010). Determining the double-K fracture parameters for three-point bending notched concrete beams using weight function. Fatigue & Fracture of Engineering Materials & Structures, 33(10), 645-660. https://doi.org/10.1111/j.1460-2695.2010.01477.x
- Kumar, S., & Pandey, S. R. (2012). Determination of double-K fracture parameters of concrete using split-tension cube test. Computers and Concrete, 9(1), 1-19. https://doi.org/10.12989/cac.2012.9.1.001
- Kumar, S., Pandey, S. R., & Srivastava, A. K. L. (2013). Analytical methods for determination of double-K fracture parameters of concrete. Advances in Concrete Construction, 1(4), 319-340. https://doi.org/10.12989/acc2013.1.4.319
- Kumar, S., Pandey, S. R., & Srivastava, A. K. L. (2014). Determination of double-K fracture parameters of concrete using peak load method. Engineering Fracture Mechanics, 131, 471-484. https://doi.org/10.1016/j.engfracmech.2014.09.004
- Kwon, S. H., Zhao, Z., & Shah, S. P. (2008). Effect of specimen size on fracture energy and softening curve of concrete: Part II. Inverse analysis and softening curve. Cement Concrete Res, 38, 1061-1069. https://doi.org/10.1016/j.cemconres.2008.03.014
- Lee, J., & Lopez, M. M. (2014). An experimental study on fracture energy of plain concrete. International Journal of Concrete Structures and Materials, 8(2), 129-139. https://doi.org/10.1007/s40069-014-0068-1
- Modeer, M. (1979). A fracture mechanics approach to failure analyses of concrete materials. Report TVBM-1001, Division of Building Materials. University of Lund, Sweden.
- Murthy, A. R., Iyer, N. R., & Prasad, B. K. R. (2012). Evaluation of fracture parameters by Double-G, Double-K models and crack extension resistance for high strength and ultra high strength concrete beams. Computers Materials & Continua, 31(3), 229-252.
- Nallathambi, P., & Karihaloo, B. L. (1986). Determination of specimen-size independent fracture toughness of plain concrete. Magazine of Concrete Research, 135, 67-76.
- Park, K., Paulino, G. H., & Roesler, J. R. (2008). Determination of the kink point in the bilinear softening model for concrete. Engineering Fracture Mechanics, 7, 3806-3818.
- Petersson, P. E. (1981). Crack growth and development of fracture zone in plain concrete and similar materials. Report No. TVBM-100, Lund Institute of Technology, Sweden.
- Planas, J., & Elices, M. (1991). Nonlinear fracture of cohesive material. International Journal of Fracture, 51, 139-157.
- Reinhardt, H. W., Cornelissen, H. A. W., & Hordijk, D. A. (1986). Tensile tests and failure analysis of concrete. Journal of Structural Engineering, 112(11), 2462-2477. https://doi.org/10.1061/(ASCE)0733-9445(1986)112:11(2462)
- Rice, J. R. (1972). Some remarks on elastic crack-tip stress fields. International Journal of Solids and Structures, 8, 751-758. https://doi.org/10.1016/0020-7683(72)90040-6
- RILEM Draft Recommendation (TC50-FMC). (1985). Determination of fracture energy of mortar and concrete by means of three-point bend test on notched beams. Materials and Structures, 18(4), 287-290. https://doi.org/10.1007/BF02472918
- Roesler, J., Paulino, G. H., Park, K., & Gaedicke, C. (2007). Concrete fracture prediction using bilinear softening. Cement Concrete Composites, 29, 300-312. https://doi.org/10.1016/j.cemconcomp.2006.12.002
- Tada, H., Paris, P. C., & Irwin, G. R. (2000). Stress analysis of cracks handbook (3rd ed.). New York, NY: ASME Press.
- Timoshenko, S. P., & Goodier, J. N. (1970). Theory of elasticity (3rd ed.). New York, NY: McGraw Hill.
- Wu, Z., Jakubczak, H., Glinka, G., Molski, K., & Nilsson, L. (2003). Determination of stress intensity factors for cracks in complex stress fields. Archive of Mechanical Engineering, 50(1), s41-s67.
- Xu, S., & Reinhardt, H. W. (1998). Crack extension resistance and fracture properties of quasi-brittle materials like concrete based on the complete process of fracture. International Journal of Fracture, 92, 71-99. https://doi.org/10.1023/A:1007553012684
- Xu, S., & Reinhardt, H. W. (1999a). Determination of double-K criterion for crack propagation in quasi-brittle materials, Part I: Experimental investigation of crack propagation. International Journal of Fracture, 98, 111-149. https://doi.org/10.1023/A:1018668929989
- Xu, S., & Reinhardt, H. W. (1999b). Determination of double-K criterion for crack propagation in quasi-brittle materials, Part II: Analytical evaluating and practical measuring methods for three-point bending notched beams. International Journal of Fracture, 98, 151-177. https://doi.org/10.1023/A:1018740728458
- Xu, S., & Reinhardt, H. W. (1999c). Determination of double-K criterion for crack propagation in quasi-brittle materials, Part III: Compact tension specimens and wedge splitting specimens. International Journal of Fracture, 98, 179-193. https://doi.org/10.1023/A:1018788611620
- Xu, S., & Reinhardt, H. W. (2000). A simplified method for determining double-K fracture meter parameters for three-point bending tests. International Journal of Fracture, 104, 181-209. https://doi.org/10.1023/A:1007676716549
- Xu, S.,&Zhang, X. (2008). Determination of fracture parameters for crack propagation in concrete using an energy approach. Engineering Fracture Mechanics, 75, 4292-4308. https://doi.org/10.1016/j.engfracmech.2008.04.022
- Xu, S., & Zhu, Y. (2009). Experimental determination of fracture parameters for crack propagation in hardening cement paste and mortar. International Journal of Fracture, 157, 33-43. https://doi.org/10.1007/s10704-009-9315-x
- Zhang, X., & Xu, S. (2011). A comparative study on five approaches to evaluate double-K fracture toughness parameters of concrete and size effect analysis. Engineering Fracture Mechanics, 78, 2115-2138. https://doi.org/10.1016/j.engfracmech.2011.03.014
- Zhang, X., Xu, S., & Zheng, S. (2007). Experimental measurement of double-K fracture parameters of concrete with small-size aggregates. Frontiers of Architecture and Civil Engineering in China, 1(4), 448-457. https://doi.org/10.1007/s11709-007-0061-8
- Zhao, Z., Kwon, S. H., & Shah, S. P. (2008). Effect of specimen size on fracture energy and softening curve of concrete: Part I. Experiments and fracture energy. Cement Concrete Res, 38, 1049-1060. https://doi.org/10.1016/j.cemconres.2008.03.017
- Zhao, Y., & Xu, S. (2002). The influence of span/depth ratio on the double-K fracture parameters of concrete. Journal of China Three Gorges University (Natural Sciences), 24(1), 35-41.
- Zi, G., & Bazant, Z. P. (2003). Eignvalue method for computing size effect of cohesive cracks with residual stress, with application to kink-bands in composites. International Journal of Engineering Science, 41, 1519-1534. https://doi.org/10.1016/S0020-7225(03)00033-8
Cited by
- Modified Disk-Shaped Compact Tension Test for Measuring Concrete Fracture Properties vol.11, pp.2, 2017, https://doi.org/10.1007/s40069-017-0189-4
- Results of round-robin testing for determining the double-K fracture parameters for crack propagation in concrete: technical report of the RILEM TC265-TDK vol.54, pp.6, 2016, https://doi.org/10.1617/s11527-021-01788-6
- Influential factors for double-K fracture parameters analyzed by the round robin tests of RILEM TC265-TDK vol.54, pp.6, 2016, https://doi.org/10.1617/s11527-021-01791-x