DOI QR코드

DOI QR Code

Improving Impact Resistance of Polymer Concrete Using CNTs

  • Daghash, Sherif M. (Department of Civil Engineering, University of Virginia) ;
  • Soliman, Eslam M. (Department of Civil Engineering, Assiut University) ;
  • Kandil, Usama F. (Polymer Nanocomposite Center of Excellence, Egyptian Petroleum Research Institute (EPRI)) ;
  • Taha, Mahmoud M. Reda (Department of Civil Engineering, University of New Mexico)
  • Received : 2016.03.15
  • Accepted : 2016.07.10
  • Published : 2016.12.30

Abstract

Polymer concrete (PC) has been favoured over Portland cement concrete when low permeability, high adhesion, and/or high durability against aggressive environments are required. In this research, a new class of PC incorporating Multi-Walled Carbon Nanotubes (MWCNTs) is introduced. Four PC mixes with different MWCNTs contents were examined. MWCNTs were carefully dispersed in epoxy resin and then mixed with the hardener and aggregate to produce PC. The impact strength of the new PC was investigated by performing low-velocity impact tests. Other mechanical properties of the new PC including compressive, flexural, and shear strengths were also characterized. Moreover, microstructural characterization using scanning electron microscope and Fourier transform infrared spectroscopy of PC incorporating MWCNTs was performed. Impact test results showed that energy absorption of PC with 1.0 wt% MWCNTs by weight of epoxy resin was significantly improved by 36 % compared with conventional PC. Microstructural analysis demonstrated evidence that MWCNTs significantly altered the chemical structure of epoxy matrix. The changes in the microstructure lead to improvements in the impact resistance of PC, which would benefit the design of various PC structural elements.

Keywords

References

  1. ACI Committee 548. (2009). Polymers and adhesives in concrete. State of the Art Report.
  2. Algaard, W., Lyle, J., & Izatt, C. (2005). Perforation of composite floors. In 5th European LS-DYNA users conference, Birmingham, UK (pp. 1123-1130).
  3. ASTM C1437. (2009). Standard test method for flow of hydraulic cement mortar. West Conshohocken, PA: ASTM International.
  4. ASTM C579-01. (2012). Standard test methods for compressive strength of chemical-resistant mortars, grouts, monolithic surfacings, and polymer concretes. West Conshohocken, PA: ASTM International.
  5. ASTM C78. (2002). Standard test method for flexural strength of concrete (using simple beam with third point loading). West Conshohocken, PA: ASTM International.
  6. ASTM D4475. (2008). Standard test method for apparent horizontal shear strength of pultruded reinforced plastic rods by the short-beam method. West Conshohocken, PA: ASTM International.
  7. ASTM D7136/D7136M. (2007). Standard test method for measuring the damage resistance of a fiber-reinforced polymer matrix composite to a drop-weight impact event. West Conshohocken, PA: ASTM International.
  8. Batarlar B. (2013). Behavior of reinforced concrete slabs subjected to impact loads. MSc Thesis, Izmir Institute of Technology, Izmir, Turkey.
  9. Beaumont, P. W. R., Riewald, P. G., & Zweben, C. (1975). Methods for improving the impact resistance of composite materials. In Foreign object impact damage to composites. West Conshohocken, PA: ASTM International.
  10. Bignozzi, M. C., Saccani, A., & Sandrolini, F. (2000). New polymer mortars containing polymeric wastes. Part 1. Microstructure and mechanical properties. Composites Part A: Applied Science and Manufacturing, 31(2), 97-106. https://doi.org/10.1016/S1359-835X(99)00063-9
  11. Borowski, E., Soliman, E., Kandil, U. F., & Taha, M. R. (2015). Interlaminar fracture toughness of CFRP laminates incorporating multi-walled carbon nanotubes. Polymers, 7(6), 1020-1045. https://doi.org/10.3390/polym7061020
  12. Byczynski L., Dutkiewicz, M., & Maciejewski, H. (2015). Synthesis and properties of high-solids hybrid materials obtained from epoxy functional urethanes and siloxanes. Progress in Organic Coatings, 84, 59-69. https://doi.org/10.1016/j.porgcoat.2015.02.017
  13. Choudhary, V., & Gupta, A. (2011). Polymer/carbon nanotube nanocomposites. Carbon Nanotubes-Polymer Nanocomposites, 2011, 65-90.
  14. Ganguli, S., Bhuyan, M., Allie, L., & Aglan, H. (2005). Effect of multi-walled carbon nanotube reinforcement on the fracture behavior of a tetrafunctional epoxy. Journal of Materials Science, 40(13), 3593-3595. https://doi.org/10.1007/s10853-005-2891-x
  15. Gojny, F. H., Wichmann, M. H., Fiedler, B., Bauhofer, W., & Schulte, K. (2005). Influence of nano-modification on the mechanical and electrical properties of conventional fibrereinforced composites. Composites Part A: Applied Science and Manufacturing, 36(11), 1525-1535. https://doi.org/10.1016/j.compositesa.2005.02.007
  16. Huang, J., Zhang, Q., Zhao, M., & Wei, F. (2012). A review of the large-scale production of carbon nanotubes: The practice of nanoscale process engineering. Chinese Science Bulletin, 57(2-3), 157-166. https://doi.org/10.1007/s11434-011-4879-z
  17. ISO 6603-2. (2000). Plastics-Determination of puncture impact behaviour of rigid plastics-Part 2: Instrumented impact testing. Dublin, Ireland: European Standards, National Standards Authority of Ireland.
  18. Izatt, C., May, I. M., Lyle, J., Chen, Y., & Algaard, W. (2009). Perforation owing to impacts on reinforced concrete slabs. Proceedings of the Institution of Civil Engineers-Structures and Buildings, 162(1), 37-44. https://doi.org/10.1680/stbu.2009.162.1.37
  19. Jiang, X., & Drzal, L. T. (2011). Improving electrical conductivity and mechanical properties of high density polyethylene through incorporation of paraffin wax coated exfoliated graphene nanoplatelets and multi-wall carbon nano-tubes. Composites Part A: Applied Science and Manufacturing, 42(11), 1840-1849. https://doi.org/10.1016/j.compositesa.2011.08.011
  20. Jo, B. W., Tae, G. H., & Kim, C. H. (2007). Uniaxial creep behavior and prediction of recycled-PET polymer concrete. Construction and Building Materials, 21(7), 1552-1559. https://doi.org/10.1016/j.conbuildmat.2005.10.003
  21. Johansen, K. W. (1962). Yield-line theory. London, UK: Cement and Concrete Association, Technology & Engineering.
  22. Kim, W. J., Kang, S. O., Ah, C. S., Lee, Y. W., Ha, D. H., Choi, I. S., et al. (2004). Functionalization of shortened SWCNTs using esterification. Bulletin-Korean Chemical Society, 25(9), 1301-1302. https://doi.org/10.5012/bkcs.2004.25.9.1301
  23. Kwon, Y., Yim, B. S., Kim, J. M., & Kim, J. (2011). Mechanical and wetting properties of epoxy resins: Amine-containing epoxy-terminated siloxane oligomer with or without reductant. Microelectronics Reliability, 51(4), 819-825. https://doi.org/10.1016/j.microrel.2010.11.001
  24. Laurenzi, S., Pastore, R., Giannini, G., & Marchetti, M. (2013). Experimental study of impact resistance in multi-walled carbon nanotube reinforced epoxy. Composite Structures, 99, 62-68. https://doi.org/10.1016/j.compstruct.2012.12.002
  25. Li, W., & Xu, J. (2009). Mechanical properties of basalt fiber reinforced geopolymeric concrete under impact loading. Materials Science and Engineering A, 505(1), 178-186. https://doi.org/10.1016/j.msea.2008.11.063
  26. Ma, P. C., & Kim, J. K. (2011). Carbon nanotubes for polymer reinforcement. Boca Raton, FL: CRC Press.
  27. Magrez, A., Seo, J. W., Smajda, R., Mionic, M., & Forro, L. (2010). Catalytic CVD synthesis of carbon nanotubes: Towards high yield and low temperature growth. Materials, 3(11), 4871-4891. https://doi.org/10.3390/ma3114871
  28. Martinez-Barrera, G., & Brostow, W. (2010). Effect of marble particle size and gamma irradiation on mechanical properties of polymer concrete. e-Polymers, 10(1), 663-676.
  29. Nam, I. W., & Lee, H. K. (2015). Image analysis and DC conductivity measurement for the evaluation of carbon nanotube distribution in cement matrix. International Journal of Concrete Structures and Materials, 9(4), 427-438. https://doi.org/10.1007/s40069-015-0121-8
  30. Orak, S. (2000). Investigation of vibration damping onp concrete with polyester resin. Cement and Concrete Research, 30(2), 171-174. https://doi.org/10.1016/S0008-8846(99)00225-2
  31. Park, S. J., Park, W. B., & Lee, J. R. (2000). Characterization of the impact properties of three-dimensional glass fabric-reinforced vinyl ester matrix composites. Journal of Materials Science, 35(24), 6151-6154. https://doi.org/10.1023/A:1026708622639
  32. Pegoretti, A., Cristelli, I., & Migliaresi, C. (2008). Experimental optimization of the impact energy absorption of epoxy-carbon laminates through controlled delamination. Composites Science and Technology, 68(13), 2653-2662. https://doi.org/10.1016/j.compscitech.2008.04.036
  33. Radlinska, A., McCarthy, L. M., Matzke, J., & Nagel, F. (2014). Synthesis of DOT use of beam end protection for extending the life of bridges. International Journal of Concrete Structures and Materials, 8(3), 185-199. https://doi.org/10.1007/s40069-014-0077-0
  34. Rebeiz, K. S., & Craft, A. P. (2002). Polymer concrete using coal fly ash. Journal of Energy Engineering-ASCE, 128(3), 62-73. https://doi.org/10.1061/(ASCE)0733-9402(2002)128:3(62)
  35. Rebeiz, K. S., Serhal, S. P., & Craft, A. P. (2004). Properties of polymer concrete using fly ash. Journal of Materials in Civil Engineering, 16(1), 15-19. https://doi.org/10.1061/(ASCE)0899-1561(2004)16:1(15)
  36. Reda Taha, M. M., Kandil, U., & Soliman, E. (2013). Generation of polymer concrete incorporating carbon nanotubes. US Patent # 8,426,501 B1.
  37. Reda Taha, M. M., Taha, E. O., & Genedy, M. (2014). Monitoring fatigue damage propagation in GFRP using carbon nanotubes, In Proceedings of American Society for Composites 29th technical conference, 16th US-Japan conference on composite materials, San Diego, CA.
  38. Riisgaard, B., Ngo, T., Mendis, P., Georgakis, C. T., & Stang, H.(2007). Dynamic increase factors for high performance concrete in compression using split Hopkinson pressure bar. In International conference of fracture mechanics of concrete structures. Denmark: Technical University of Denmark.
  39. Roessler, D. M. (1965). Kramers-Kronig analysis of reflection data. British Journal of Applied Physics, 16(8), 1119. https://doi.org/10.1088/0508-3443/16/8/310
  40. Sett, K., & Vipulanandan, C. (2004). Properties of polyester polymer concrete with glass and carbon fibers. ACI Materials Journal, 101(1), 30-41.
  41. Sharma, R., & Iqbal, Z. (2004). In situ observations of carbon nanotube formation using environmental transmission electron microscopy. Applied Physics Letters, 84(6), 990-992. https://doi.org/10.1063/1.1646465
  42. Soliman, E., Al-Haik, M., & Taha, M. R. (2012a). On and offaxis tension behavior of fiber reinforced polymer composites incorporating multi-walled carbon nanotubes. Journal of Composite Materials, 46(14), 1661-1675. https://doi.org/10.1177/0021998311422456
  43. Soliman, E. M., Sheyka, M. P., & Taha, M. R. (2012b). Lowvelocity impact of thin woven carbon fabric composites incorporating multi-walled carbon nanotubes. International Journal of Impact Engineering, 47, 39-47. https://doi.org/10.1016/j.ijimpeng.2012.03.002
  44. Swain, S., Sharma, R. A., Patil, S., Bhattacharya, S., Gadiyaram, S. P., & Chaudhari, L. (2012). Effect of allyl modified/silane modified multiwalled carbon nanotubes on the electrical properties of unsaturated polyester resin composites. Transactions on Electrical and Electronic Materials, 13(6), 267-272. https://doi.org/10.4313/TEEM.2012.13.6.267
  45. Tan, C. W., Tan, K. H., Ong, Y. T., Mohamed, A. R., Zein, S. H. S., & Tan, S. H. (2012). Energy and environmental applications of carbon nanotubes. Environmental Chemistry Letters, 10(3), 265-273. https://doi.org/10.1007/s10311-012-0356-4
  46. Tawfik, M. E., & Eskander, S. B. (2006). Polymer concrete from marble wastes and recycled poly (ethylene terephthalate). Journal of Elastomers and Plastics, 38(1), 65-79. https://doi.org/10.1177/0095244306055569
  47. Ting, J. H., Lyu, J. Y., Huang, F. Y., Li, T. L., Hsu, C. L., & Liu, C. W. (2008). Synthesis of single-wall carbon nanotubes by atmospheric thermal CVD. In University/Government/Industry Micro/Nano Symposium (UGIM 2008), 17th Biennial (pp. 157-160). Louisville, KY: IEEE.
  48. Tsai, C. W., Wu, K. H., Yang, C. C., & Wang, G. P. (2015). Adamantane-based epoxy resin and siloxane-modified adamantane-based epoxy resin: Characterization of thermal, dielectric and optical properties. Reactive & Functional Polymers, 91, 11-18.
  49. Viets, C., Mannov, E., Buschhorn, S., & Schulte, K. (2009). Laminate lay-up influence on sensing properties of carbon nanotube modified GFRP via electrical conductivity methods. In 16th international conference on composite structures (ICCS 16), Porto, Portugal.
  50. Wang, B., Chen, R., Zhang, T., & Jiang, X. (2003). The application of polymer concrete in the airfield rapid repair. In Proceedings of the international conference on advances in concrete and structures (ICACS 2003), RILEM Publications, Bagneux, France (pp. 691-695).
  51. Wang, S., Li, Y., Fei, X., Sun, M., Zhang, X., Li, Y., et al. (2011). Preparation of a durable superhydrophobic membrane by electrospinning poly (vinylidene fluoride)(PVDF) mixed with epoxy-siloxane modified $SiO_2$ nanoparticles: A possible route to superhydrophobic surfaces with low water sliding angle and high water contact angle. Journal of Colloid and Interface Science, 359(2), 380-388. https://doi.org/10.1016/j.jcis.2011.04.004
  52. Wang, T., Zhang, J., Bai, W., & Hao, S. (2013). Forming process and mechanical properties of fibers-reinforced polymer concrete. Journal of Reinforced Plastics and Composites, 32(12), 907-911. https://doi.org/10.1177/0731684413478476
  53. Xu, J. Y., Li, W. M., Fan, F. L., & Bai, E. L. (2010). Experimental study on impact properties of carbon fiber reinforced geopolymeric concrete using a SHPB. Journal of Building Materials, 13(4), 66-69.
  54. Zamal, H. H. (2011). Monitoring fatigue damage behavior of glass/epoxy composites using carbon nanotubes as sensors. PhD dissertation, Concordia University, Montreal, Quebec, Canada.
  55. Zhou, D., & Chow, L. (2003). Complex structure of carbon nanotubes and their implications for formation mechanism. Journal of Applied Physics, 93(12), 9972-9976. https://doi.org/10.1063/1.1573733
  56. Zhu, J., Kim, J., Peng, H., Margrave, J. L., Khabashesku, V. N., & Barrera, E. V. (2003). Improving the dispersion and integration of single-walled carbon nanotubes in epoxy composites through functionalization. Nano Letters, 3(8), 1107-1113. https://doi.org/10.1021/nl0342489
  57. Zhu, J., Peng, H., Rodriguez-Macias, F., Margrave, J. L., Khabashesku, V. N., Imam, A. M., et al. (2004). Reinforcing epoxy polymer composites through covalent integration of functionalized nanotubes. Advanced Functional Materials, 14(7), 643-648. https://doi.org/10.1002/adfm.200305162
  58. Zou, W., Du, Z. J., Liu, Y. X., Yang, X., Li, H. Q., & Zhang, C.(2008). Functionalization of MWNTs using polyacryloyl chloride and the properties of CNT-epoxy matrix nanocomposites. Composites Science and Technology, 68(15), 3259-3264. https://doi.org/10.1016/j.compscitech.2008.08.011

Cited by

  1. Mechanical Properties of Epoxy Resin Mortar with Sand Washing Waste as Filler vol.10, pp.3, 2017, https://doi.org/10.3390/ma10030246
  2. Reliability Assessment of HFRC Slabs Against Projectile Impact vol.12, pp.1, 2018, https://doi.org/10.1186/s40069-018-0289-9
  3. The Effects of Nano-SiO2 and Nano-TiO2 Addition on the Durability and Deterioration of Concrete Subject to Freezing and Thawing Cycles vol.12, pp.21, 2019, https://doi.org/10.3390/ma12213608
  4. Deformability of Bisphenol A-Type Epoxy Resin-Based Polymer Concrete with Different Hardeners and Fillers vol.10, pp.4, 2020, https://doi.org/10.3390/app10041336
  5. Experimental and numerical study of RC columns under lateral low-velocity impact load vol.173, pp.8, 2016, https://doi.org/10.1680/jstbu.18.00041
  6. Study on soil mechanics and frost resistance of fly ash-metakaolin geopolymer vol.13, pp.18, 2016, https://doi.org/10.1007/s12517-020-05954-y
  7. Rheological Characterization of Three-Dimensional-Printed Polymer Concrete vol.118, pp.6, 2016, https://doi.org/10.14359/51733123
  8. Research on the Mechanical Performance of Carbon Nanofiber Reinforced Concrete under Impact Load Based on Fractal Theory vol.11, pp.4, 2016, https://doi.org/10.3390/cryst11040387
  9. Preparation Process and Early Working Performance of Inorganic Polymer-based Fast-hardening Concrete vol.1972, pp.1, 2016, https://doi.org/10.1088/1742-6596/1972/1/012121