References
- AASHTO. (2008). AASHTO LRFD Bridge design specifications, American Association of State Highway and Transportation Officials.
- ACI Committee 318. (2014). Building code requirements for structural concrete and commentary. ACI 318-14/ACI 318R-14, American Concrete Institute, Farmington Hills, MI, 519 pp.
- CAN/CSA S806-12. (2012). Design and construction of building components with fibre reinforced polymers. Canadian Standards Association, Rexdale, Canada, 187 pp.
- CAN/CSA-A23.3-04. (2004). Design of concrete structures. Canadian Standards Association, Rexdale, Canada, 240 pp.
- El-Sayed, A. K., El-Salakawy, E., & Benmokrane, B. (2006). Shear capacity of high-strength concrete beams reinforced with FRP bars. ACI Structural Journal, 103(3), 383-389.
- Eurocode 2. (2004). Design of concrete structures, Part 1-1: General rules and rules for buildings. European Committee for Standardization, Brussels, Belgium, 230 pp.
- Harkouss, R. H., & Hamad, B. S. (2015). Performance of high strength self-compacting concrete beams under different modes of failure. International Journal of Concrete Structures and Materials, 9(1), 69-88. https://doi.org/10.1007/s40069-014-0088-x
- Jeong, J. P., & Kim, W. (2014). Shear resistant mechanism into base components: Beam action and arch action in shearcritical RC members. International Journal of Concrete Structures and Materials, 8(1), 1-14. https://doi.org/10.1007/s40069-013-0064-x
- Joint ACI-ASCE Committee 445 (Reapproved 2009). Recent approaches to shear design of structural concrete, ACI Manual of Concrete Practice, American Concrete Institute, Farmington Hills, MI, 56 pp.
- Kim, J. K., & Park, Y. D. (1996). Prediction of shear strength of reinforced concrete beams without web reinforcement. ACI Materials Journal, 93(3), 213-222.
- Muttoni, A., & Ruiz, M. F. (2008). Shear strength of members without transverse reinforcement as function of critical shear crack width. ACI Structural Journal, 105(2), 163-172.
- Okamura, H., & Higai, T. (1980). Proposed design equation for shear strength of RC Beams without web reinforcement. Proceedings, Japan Society of Civil Engineering, 300, 131-141.
- Park, H. G., Choi, K. K., & Wight, J. K. (2006). Strain-based shear strength model for slender beams without web reinforcement. ACI Structural Journal, 103(6), 783-793.
- Rebeiz, K. S. (1999). Shear strength prediction for concrete members. Journal of Structural Engineering, ASCE, 125(3), 301-308. https://doi.org/10.1061/(ASCE)0733-9445(1999)125:3(301)
- Shuraim, A. B. (2014). A novel approach for evaluating the concrete shear strength in reinforced concrete beams. Latin American Journal of Solids and Structures, 11(1), 93-112. https://doi.org/10.1590/S1679-78252014000100006
- Tureyen, A. K., & Frosch, R. J. (2003). Concrete shear strength: Another perspective. ACI Structural Journal, 100(5), 609-615.
- Vecchio, F. J., & Collins, M. P. (1986). The modified compression field theory for reinforced concrete elements subjected to shear. ACI Journal, 83(2), 219-231.
- Zararis, P. D.,&Papadakis, G. (2001). Diagonal shear failure and size effect in RC beams without web reinforcement. Journal of Structural Engineering, ASCE, 127(7), 733-742. https://doi.org/10.1061/(ASCE)0733-9445(2001)127:7(733)
- Zsutty, T. C. (1968). Beam shear strength prediction by analysis of existing data. ACI Journal, 65(11), 943-951.
Cited by
- Single Web Shear Element Model for Shear Strength of RC Beams with Stirrups vol.12, pp.1, 2016, https://doi.org/10.1186/s40069-018-0252-9