References
- ACI Committee 318-02. (2002). Building Code Requirements for Structural Concrete (ACI 318-02) and Commentary (318R-02). Farmington Hills, MI: American Concrete Institute.
- Ahmadi, R., Rashidian, O., Abbasnia, R., Mohajeri Nav, F., & Yousefi, N. (2016). Experimental and numerical evaluation of progressive collapse behavior in scaled RC beam-column sub-assemblage. Shock and Vibration,. doi:10.1155/2016/3748435.
- Altoonash, A. (2004). Simulation and damage models for performance assessment of reinforced concrete beam-column joints. Ph.D. Dissertation, Standford University, Stanford, CA.
- Bao, Y. H., & Kunnath, S. K. (2010). Simplified progressive collapse simulation of RC frame-wall structures. Engineering Structures, 32(10), 3153-3162. https://doi.org/10.1016/j.engstruct.2010.06.003
- Bao, Y. H., Kunnath, S. K., El-Tawil, S., & Lew, H. S. (2008). Macro-model based simulation of progressive collapse: RC frame structures. Journal of Structural Engineering, 134(7), 1079-1091. https://doi.org/10.1061/(ASCE)0733-9445(2008)134:7(1079)
- Bao, Y. H., Lew, H. S., & Kunnath, S. K. (2014). Modeling of reinforced concrete assemblies under a column removal scenario. Journal of Structural Engineering, 140(1), 04013026. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000773
- Bentz, E. C. (2000). Membrane-2000: Reinforced Concrete Membrane Analysis using the Modified Compression Field Theory. Toronto, Canada: University of Toronto.
- Choi, H., & Kim, J. (2011). Progressive collapse-resisting capacity of RC beam-column sub-assemblage. Magazine of Concrete Research, 63(4), 297-310. https://doi.org/10.1680/macr.9.00170
- Department of Defense (DoD) Unified facilities criteria (UFC). (2010). Design of buildings to resist progressive collapse. UFC 4-023-03, U.S. DoD.
- Farhang Vesali, N., Valipour, H., Samali, B., & Foster, S. (2013). Development of arching action in longitudinallyrestrained reinforced concrete beams. Construction and Building Materials, 47, 7-19. https://doi.org/10.1016/j.conbuildmat.2013.04.050
- Harris, H. G., & Sabins, G. M. (1999). Structural modeling and experimental technique (2nd ed.). Boca Raton, FL: CRC Press.
- Jian, H., & Zheng, Y. (2014). Simplified models of progressive collapse response and progressive collapse-resisting capacity curve of RC beam-column substructures. Journal of Performance of Constructed Facilities, 28(4), 04014008. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000492
- Kim, J., & Choi, H. (2015). Monotonic loading tests of RC beam-column subassemblage strengthened to prevent progressive collapse. International Journal of Concrete Structures and Materials, 9(4), 401-413. https://doi.org/10.1007/s40069-015-0119-2
- Lew, H. S., Bao, Y. H., Main, J. A., Pujol, S., & Sozen, M. A. (2014). Experimental study of reinforced concrete assemblies under column removal scenario. ACI Structural Journal, 111(4), 881-892.
- Lew, H. S., Bao, Y. H., Sadek, F., Main, J. A., Pujol, S., & Sozen, M. A. (2011). An experimental and computational study of reinforced concrete assemblies under a column removal scenario. NIST Technical Note 1720.
- Lowes, L. N., & Altoontash, A. (2003). Modeling reinforcedconcrete beam-column joints subjected to cyclic loading. Journal of Structural Engineering, 129(12), 1686-1697. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:12(1686)
- McKenna F et al. (2007). Open system for earthquake engineering simulation (OpenSees). http://www.opensees. berkeley.edu. PEER. Berkeley, CA: University of California.
- Qian, K., & Li, B. (2012a). Dynamic performance of reinforced concrete beam-column substructures under the scenario of the loss of corner column-Experimental results. Engineering Structures, 42, 154-167. https://doi.org/10.1016/j.engstruct.2012.04.016
- Qian, K., & Li, B. (2012b). Slab effects on the response of reinforced concrete substructures after loss of corner column. ACI Structural Journal, 109(6), 845-856.
- Qian, K., & Li, B. (2015). Quantification of slab influences on the dynamic performance of RC frames against progressive collapse. ASCE Journal of Performance of Constructed Facilities, 29(1), 04014025. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000493
- Qian, K., Li, B., & Ma, J. X. (2014). Load-carrying mechanism to resist progressive collapse of RC buildings. Journal of Structural Engineering (ASCE), 141(2), 04014107.
- Qian, K., Li, B., & Zhang, Z. W. (2015). Testing and Simulation of 3D Effects on Progressive Collapse Resistance of RC Buildings. Magazine of Concrete Research, 67(4), 163-178. https://doi.org/10.1680/macr.14.00178
- Sasani, M., Bazan, M., & Sagiroglu, S. (2007). Experimental and analytical progressive collapse evaluation of an actual reinforced concrete structure. ACI Structural Journal, 104(6), 731-739.
- Sasani, M., Kazemi, A., Sagiroglu, S., & Forest, S. (2011a). Progressive collapse resistance of an actual 11-story structure subjected to severe initial damage. Journal of Structural Engineering, 137(9), 893-902. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000418
- Sasani, M., & Kropelnicki, J. (2008). Progressive collapse analysis of an RC structure. The Structural Design of Tall and Special Buildings, 17(4), 757-771. https://doi.org/10.1002/tal.375
- Sasani, M., & Sagiroglu, S. (2008). Progressive collapse resistance of hotel San Diego. Journal of Structural Engineering, 134(3), 478-488. https://doi.org/10.1061/(ASCE)0733-9445(2008)134:3(478)
- Sasani, M., Werner, A., & Kazemi, A. (2011b). Bar fracture modeling in progressive collapse analysis of reinforced concrete structures. Engineering Structures, 33, 401-409. https://doi.org/10.1016/j.engstruct.2010.10.023
- Su, Y. P., Tian, Y., & Song, X. S. (2009). Progressive collapse resistance of axially-restrained frame beams. ACI Structural Journal, 106(5), 600-607.
- Tsai, M. H., & Huang, T. C. (2015). Collapse-resistant performance of RC beam-column sub-assemblages with varied section depth and stirrup spacing. The Structural Design of Tall and Special Buildings, 24(8), 555-570. https://doi.org/10.1002/tal.1199
- Vecchio, F. J., & Collins, M. P. (1986). The modified compression field theory for reinforced concrete elements subjected to shear. ACI Structural Journal, 83(2), 219-231.
- Yi, W. J., He, Q. F., Xiao, Y., & Kunnath, S. K. (2008). Experimental study on progressive collapse-resistant behavior of reinforced concrete frame structures. ACI Structural Journal, 105(4), 433-439.
- Yu, J., & Tan, K. H. (2011). Experimental and numerical investigation on progressive collapse resistance of reinforced concrete beam column sub-assemblages. Engineering Structures, 55, 90-106.
- Yu, J., & Tan, K. H. (2013a). Experimental and numerical investigation on progressive collapse resistance of reinforced concrete beam column sub-assemblages. Engineering Structures, 55, 90-106. https://doi.org/10.1016/j.engstruct.2011.08.040
- Yu, J., & Tan, K. H. (2013b). Structural behaviour of reinforced concrete beam-column sub-assemblages under a middle column removal scenario. Journal of Structural Engineering, 139(2), 233-250. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000658
- Yu, J., & Tan, K. H. (2014). Special detailing techniques to improve structural resistance against progressive collapse. Journal of Structural Engineering, 140(3), 04013077. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000886
Cited by
- Experimental Cyclic Behavior of Precast Hybrid Beam-Column Connections with Welded Components vol.11, pp.2, 2016, https://doi.org/10.1007/s40069-017-0190-y
- Seismic Performance of Exterior RC Beam–Column Joints Retrofitted using Various Retrofit Solutions vol.11, pp.3, 2016, https://doi.org/10.1007/s40069-017-0203-x
- Modelling of Stirrup Confinement Effects in RC Layered Beam Finite Elements Using a 3D Yield Criterion and Transversal Equilibrium Constraints vol.12, pp.1, 2018, https://doi.org/10.1186/s40069-018-0278-z
- Dynamic Increase Factor for Nonlinear Static Analysis of RC Frame Buildings Against Progressive Collapse vol.17, pp.3, 2016, https://doi.org/10.1007/s40999-017-0253-0
- Assessment of Delay Factors for Structural Frameworks in Free-form Tall Buildings Using the FMEA vol.13, pp.1, 2016, https://doi.org/10.1186/s40069-018-0309-9
- Factors influencing the progressive collapse resistance of RC frame structures vol.27, pp.None, 2016, https://doi.org/10.1016/j.jobe.2019.100986
- Progressive collapse test of assembled monolithic concrete frame spatial substructures with different anchorage methods in the beam-column joint vol.23, pp.9, 2016, https://doi.org/10.1177/1369433219900679
- An Equivalent Method for Bar Slip Simulation in Reinforced Concrete Frames vol.18, pp.8, 2016, https://doi.org/10.1007/s40999-020-00507-6
- An analytical model on compressive arch action capacity of 3D beam-column sub-assemblages under failure of one or two adjacent interior columns vol.115, pp.None, 2016, https://doi.org/10.1016/j.engfailanal.2020.104690
- Prediction of Catenary Action Capacity of RC Beam-Column Substructures under a Missing Column Scenario Using Evolutionary Algorithm vol.25, pp.3, 2016, https://doi.org/10.1007/s12205-021-0431-0
- Progressive collapse risk of 2D and 3D steel-frame assemblies having shear connections vol.179, pp.None, 2016, https://doi.org/10.1016/j.jcsr.2021.106533
- Dynamic Behavior of a Precast and Partial Steel Joint under Various Shear Span-to-Depth Ratios vol.14, pp.9, 2021, https://doi.org/10.3390/ma14092162
- Experimental Studies on Progressive Collapse Behavior of RC Frame Structures: Advances and Future Needs vol.15, pp.1, 2016, https://doi.org/10.1186/s40069-021-00469-6