DOI QR코드

DOI QR Code

HPLC analysis of Phenolic Substances and Anti-Alzheimer's Activity of Korean Quercus Species

  • Nugroho, Agung (Department of Agro-industrial Technology, Lambung Mangkurat University) ;
  • Song, Byong-Min (Department of Forest Science, Sangji University) ;
  • Seong, Su Hui (Department of Food Science and Nutrition, Pukyong National University) ;
  • Choi, Jae Sue (Department of Food Science and Nutrition, Pukyong National University) ;
  • Choi, Jongwon (Southeast Medi-Chem Institute) ;
  • Choi, Ji-Yeon (Southeast Medi-Chem Institute) ;
  • Park, Hee-Juhn (Department of Pharmaceutical Engineering, Sangji University)
  • Received : 2016.07.30
  • Accepted : 2016.10.03
  • Published : 2016.12.31

Abstract

This study aimed to establish the quantitative method to analyze the content of peroxynitrite-scavengers belonging to polyphenols in six Korean Quercus species (Quercus mongolica, Q. dentata, Q. acutissima, Q. alienta, Q. serrata, and Q. variabilis) by HPLC. The twelve peroxynitrite-scavengers, flavanols (catechins: (+)-catechin, (-)-epicatechin, and (-)-epigallocatechin), flavonols (kaempferol and quercetin), flavonol glycosides (astragalin, quercitrin, and isoquercitrin), flavonol acylated glycosides (astragalin 6''-gallate and isoquercitrin 6''-gallate), gallic acid and its dimer (ellagic acid) were analyzed by HPLC. Further, anti-Alzheimer's activity was assayed in a passive avoidance testusing mice by measuring the retention latency (sec), the concentration of acetylcholine (ACh), and acetylcholinesterase (AChE) activity. Simultaneous analysis of the extracts of the six Quercus leaves was achieved on a Capcell C18 column ($5{\mu}m$, $250mm{\times}4.6mm\;i.d.$) with a gradient elution of 0.05% HAc and 0.05% HAc in $CH_3CN$. In the extract of Q. mongolica leaves, the content of gallic acid (32.53 mg/g), (+)-catechin (28.78 mg/g), (-)-epicatehin (22.03 mg/g), astragalin 6''-gallate (20.94 mg/g), and isoquercitrin 6''-gallate (44.11 mg/g) and peroxynitrite-scavenging activity ($IC_{50}$, $0.831{\mu}g/ml$) were high. This extract delayed the retention latency and inhibited acetylcholinesterase activity in scopolamine-induced memory impairment of mice, suggesting that it has anti-Alzheimer's activity.

Keywords

References

  1. Kim, J. G.; Bae Y. S. Chemical constituents of domestic Quercus spp. Leaves. Mokchae Konghak 2006, 34, 61-71.
  2. Kuliev, Z. A.; Vdovin, A. D.; Abdullaev, N. D.; Makhamatkulov, A. D.; Matikov, V. M. Chem. Nat. Prod. 1997, 33, 642-652.
  3. Sakar, M. K.; Sohretogu, D.; Ozalp, M.; Ekizoglu, M.; Piancente, S.; Pizza, C. Turk. J. Chem. 2005, 29, 555-559.
  4. Zaveri, N. T. Life Sci. 2006, 78, 2073-2080. https://doi.org/10.1016/j.lfs.2005.12.006
  5. Patcher, P.; Obrosova, I. G.; Mabley, J. G.; Szabo, C. Curr. Med. Chem. 2005, 12, 267-275. https://doi.org/10.2174/0929867053363207
  6. Zhang, Y. J.; Xu, Y. F.; Liu, Y. H.; Yin, J.; Li, H. L.; Wang, Q.; Wang, J. Z. FASEB J. 2006, 20, 131-142.
  7. Ortiz, G. G.; Benitez-King, G. A.; Rosales-Corral, S. A.; Pacheco-Moises, F. P.; Velazquez-Brizuela, I. E. Curr. Neuropharmacol. 2008, 6, 203-214. https://doi.org/10.2174/157015908785777201
  8. Syad, A. N.; Devi, K. P. Bot. Targ. Ther. 2014, 4, 11-26.
  9. Moniruzzaman, M.; Asaduzzaman, M.; Hossain, M. S.; Sarker, J.; Rahman, S. M. A.; Rashid, M.; Rahman, M. M. BMC Complement. Altern. Med. 2015, 15, 403-412. https://doi.org/10.1186/s12906-015-0930-y
  10. Nugroho, A.; Rhim, T. J.; Choi, M. Y.; Choi, J. S.; Kim, Y. C.; Kim, M. S.; Park, H. J. Arch. Pharm. Res. 2014, 37, 890-898. https://doi.org/10.1007/s12272-013-0307-z
  11. Kooy, N. W.; Royall, J. A.; Ischiropoulos, H.; Beckman, J. S. Free Radic. Biol. Med. 1994, 16, 149-156. https://doi.org/10.1016/0891-5849(94)90138-4
  12. Van der Zee E. A.; Biemans, B. A.; Gerkema, M. P.; Daans, S. J. Neurosci. Res. 2004, 78, 508-519. https://doi.org/10.1002/jnr.20300
  13. Ellman, G. L.; Courtney, K. D.; Andres, V. Jr.; Feather-stone, R. M. Biochem. Pharmacol. 1961, 7, 88-95. https://doi.org/10.1016/0006-2952(61)90145-9
  14. Hestrin, S. J. Biol. Chem. 1949, 180, 249-261.
  15. Chung, H. Y.; Yokozawa, T.; Soung, D. Y.; Kye, I. S.; No, J. K.; Baek, B. S. J. Agric. Food Chem. 1998, 46, 4484-4486. https://doi.org/10.1021/jf980556u
  16. Gimenez-Garzo, C.; Urios, A.; Agustí, A.; Gonzalez-Lopez. O.; Escudero-Garcia, D.; Escudero-Sanchis, A.; Serra, M. A.; Giner-Duran, R.; Montoliu, C.; Felipo, V. Antioxid. Redox Signal. 2015, 22, 871-877. https://doi.org/10.1089/ars.2014.6240
  17. Smith, M. A.; Taneda, S.; Richey, P. L.; Miyata, S.; Yan, S. D.; Stern, D.; Sayre, L. M.; Monnier, V. M.; Perry, G. Proc. Natl. Acad. Sci. U. S. A. 1994, 91, 5710-5714. https://doi.org/10.1073/pnas.91.12.5710
  18. Sayre, L. M.; Zelasko, D. A.; Harris, P. L.; Perry, G.; Salomon, R. G.; Smith, M. A. J. Neurochem. 1997, 68, 2092-2097.
  19. Perry, G.; Cash, A. D.; Smith, M. A. J. Biomed. Biotechnol. 2002, 2, 120-123. https://doi.org/10.1155/S1110724302203010
  20. Durairajan, S. S.; Yuan, Q.; Xie L.; Chan, W. S.; Kum, W. F.; Koo, I.; Liu, C.; Song, Y.; Huang, J. D.; Klein, W. L.; Li, M. Neurochem Int. 2008, 52, 741-750. https://doi.org/10.1016/j.neuint.2007.09.006
  21. Feng Y.; Yang, S. G.; Du, X. T.; Zhang, X.; Sun, X. X.; Zhao, M.; Sun, G. Y.; Liu, R. T. Biochem. Biophys. Res. Commun. 2009, 390, 1250-1254. https://doi.org/10.1016/j.bbrc.2009.10.130
  22. Zhang, L.; Fiala M, Cashman, J.; Sayre, J.; Espinosa, A.; Mahanian, M.; Zaghi, J.; Badmaev, V.; Graves, M. C.; Bernard, G.; Rosenthal, M. J. Alzheimers Dis. 2006, 10, 1-7. https://doi.org/10.3233/JAD-2006-10101
  23. Hwang, E. M.; Ryu, Y. B.; Kim, H. Y.; Kim, D. G.; Hong, S. G.; Lee, J. H.; Curtis-Long, M. J.; Jeong, S. H.; Park, J. Y.; Park, K. H. Bioorg. Med. Chem. 2008, 16, 6669-6674. https://doi.org/10.1016/j.bmc.2008.05.080
  24. Descamps, O.; Spilman, P.; Zhang, Q.; Libeu, C. P.; Poksay, K.; Gorostiza, O.; Campagna, J.; Jagodzinska, B.; Bredesen, D. E.; John, V. J. Alzheimers Dis. 2013, 37, 343-355. https://doi.org/10.3233/JAD-130578

Cited by

  1. Cyanidin-3-O-glucoside attenuates amyloid-beta (1-40)-induced oxidative stress and apoptosis in SH-SY5Y cells through a Nrf2 mechanism vol.38, pp.1, 2016, https://doi.org/10.1016/j.jff.2017.09.025
  2. Eco-Friendly Fabrication of Plasmonically Active Substrates Based on End-Grafted Poly(ethylene glycol) Layers vol.7, pp.4, 2019, https://doi.org/10.1021/acssuschemeng.8b06133
  3. Neuroprotective Effects of Triterpenoids from Camellia japonica against Amyloid β-Induced Neuronal Damage vol.83, pp.7, 2016, https://doi.org/10.1021/acs.jnatprod.9b00964