DOI QR코드

DOI QR Code

Effects of (-)-Sesamin on Memory Deficits in MPTP-lesioned Mouse Model of Parkinson's Disease

  • Zhao, Ting Ting (Department of Pharmacy and Research Center for Bioresource and Health, College of Pharmacy, Chungbuk National University) ;
  • Shin, Keon Sung (Department of Pharmacy and Research Center for Bioresource and Health, College of Pharmacy, Chungbuk National University) ;
  • Lee, Myung Koo (Department of Pharmacy and Research Center for Bioresource and Health, College of Pharmacy, Chungbuk National University)
  • Received : 2016.03.03
  • Accepted : 2016.06.10
  • Published : 2016.12.31

Abstract

This study investigated the effects of (-)-sesamin on memory deficits in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-lesioned mouse model of Parkinson's disease (PD). MPTP lesion (30 mg/kg/day, 5 days) in mice showed memory deficits including habit learning memory and spatial memory. However, treatment with (-)-sesamin (25 and 50 mg/kg) for 21 days ameliorated memory deficits in MPTP-lesioned mouse model of PD: (-)-sesamin at both doses improved decreases in the retention latency time of the passive avoidance test and the levels of dopamine, norepinephrine, 3,4-dihydroxyphenylacetic acid, and homovanillic acid, improved the decreased transfer latency time of the elevated plus-maze test, reduced the increased expression of N-methyl-D-aspartate (NMDA) receptor, and increased the reduced phosphorylation of extracellular signal-regulated kinase (ERK1/2) and cyclic AMP-response element binding protein (CREB). These results suggest that (-)-sesamin has protective effects on both habit learning memory and spatial memory deficits via the dopaminergic neurons and NMDA receptor-ERK1/2-CREB system in MPTP-lesioned mouse model of PD, respectively. Therefore, (-)-sesamin may serve as an adjuvant phytonutrient for memory deficits in PD patients.

Keywords

References

  1. Mayeux, R. Annu. Rev. Neurosci. 2003, 26, 81-104. https://doi.org/10.1146/annurev.neuro.26.043002.094919
  2. Buter, T. C.; van den Hout, A.; Matthews, F. E.; Larsen, J. P.; Brayne, C.; Aarsland, D. Neurology 2008, 70, 1017-1022. https://doi.org/10.1212/01.wnl.0000306632.43729.24
  3. Williams-Gray, C. H.; Foltynie, T.; Brayne, C. E.; Robbins, T. W.; Barker, R. A. Brain 2007, 130, 1787-1798. https://doi.org/10.1093/brain/awm111
  4. Da Cunha, C.; Angelucci, M. E. M.; Canteras, N. S.; Wonnacott, S.; Takahashi, R. N. Cell. Mol. Neurobiol. 2002, 22, 227-237. https://doi.org/10.1023/A:1020736131907
  5. Shi, L.; Adams, M. M.; Long, A.; Carter, C. C.; Bennett, C.; Sonntag, W. E.; Nicolle, M. M.; Robbins, M.; D'Agostino, R.; Brunso-Bechtolda, J. K. Radiat. Res. 2006, 166, 892-899. https://doi.org/10.1667/RR0588.1
  6. Wang, H. M.; Cheng, K. C.; Lin, C. J.; Hsu, S. W.; Fang, W. C.; Hsu, T. F.; Chiu, C. C.; Chang, H. W.; Hsu, C. H.; Lee, A. Y. Cancer Sci. 2010, 101, 2612-2620. https://doi.org/10.1111/j.1349-7006.2010.01701.x
  7. Han, A. R.; Kim, H. J.; Shin, M.; Hong, M.; Kim, Y. S.; Bae, H. Chem. Biodivers. 2008, 5, 346-351. https://doi.org/10.1002/cbdv.200890033
  8. Penalvo, J. L.; Hopia, A.; Adlercreutz, H. Eur. J. Nutr. 2006, 45, 439-444. https://doi.org/10.1007/s00394-006-0617-8
  9. Park, H. J.; Zhao, T. T.; Lee, K. S.; Lee, S. H.; Shin, K. S.; Park, K. H.; Choi, H. S.; Lee, M. K. Neurochem. Int. 2015, 83-84, 19-27. https://doi.org/10.1016/j.neuint.2015.01.003
  10. Fujikawa, T.; Kanada, N.; Shimada, A.; Ogata, M.; Suzuki, I.; Hayashi, I.; Nakashima, K. Biol. Pharm. Bull. 2005, 28, 169-172. https://doi.org/10.1248/bpb.28.169
  11. Zhang, M.; Lee, H. J.; Park, K. H.; Park, H. J.; Choi, H. S.; Lim, S. C.; Lee, M. K. Neuropharmacology 2012, 62, 2219-2226. https://doi.org/10.1016/j.neuropharm.2012.01.012
  12. Li, C. Y.; Chow, T. J.; Wu, T. S. J. Nat. Prod. 2005, 68, 1622-1624. https://doi.org/10.1021/np050106d
  13. Schober, A. Cell Tissue Res. 2004, 318, 215-224. https://doi.org/10.1007/s00441-004-0938-y
  14. Roghani, M.; Baluchnejadnojarad, T. Basic Clin. Neurosci. 2010, 1, 52-55.
  15. Izurieta-Sanchez, P.; Sarre, S.; Ebinger, G.; Michotte, Y. Eur. J. Pharmacol. 1998, 353, 33-42. https://doi.org/10.1016/S0014-2999(98)00393-8
  16. Shin, K. S.; Choi, H. S.; Zhao, T. T.; Suh, K. H.; Kwon, I. H.; Choi, S. O.; Lee, M. K. Arch. Pharm. Res. 2013, 36, 759-767. https://doi.org/10.1007/s12272-013-0051-4
  17. Kumar, B.; Kuhad, A.; Chopra, K. Psychopharmacology 2011, 214, 819-828. https://doi.org/10.1007/s00213-010-2094-2
  18. El Massioui, N.; Delatour, B. V. Neurosci. Res. Comm. 1997, 21, 103-111. https://doi.org/10.1002/(SICI)1520-6769(199709/10)21:2<103::AID-NRC213>3.0.CO;2-9
  19. Matsumoto, N.; Hanakawa, T.; Maki, S.; Graybiel, A. M.; Kimura, M. J. Neurophysiol. 1999, 82, 978-98. https://doi.org/10.1152/jn.1999.82.2.978
  20. Bannerman, D. M.; Good, M. A.; Butcher, S. P., Ramsay, M.; Morris, R. G. Nature 1995, 378, 182-186. https://doi.org/10.1038/378182a0
  21. Krapivinsky, G.; Krapivinsky, L.; Manasian, L.; Ivanov, A.; Tyzio, R.; Pellegrino, C.; Ben-Ari, Y.; Clapham, D. E.; Medina, I. Neuron 2003, 40, 775-784. https://doi.org/10.1016/S0896-6273(03)00645-7
  22. Carlezon Jr, W. A.; Duman, R. S.; Nestler, E. J. Trends Neurosci. 2005, 28, 436-445. https://doi.org/10.1016/j.tins.2005.06.005
  23. Heikkila, R. E.; Hess, A.; Duvoisin, R. C. Science 1984, 224, 1451-1453. https://doi.org/10.1126/science.6610213

Cited by

  1. Neuroprotective Effects of Black Pepper Cold-Pressed Oil on Scopolamine-Induced Oxidative Stress and Memory Impairment in Rats vol.10, pp.12, 2016, https://doi.org/10.3390/antiox10121993