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Abstract 
 

Enhancing the performance of computing systems has been an important topic since the 
invention of computers. The leading-edge technologies of multicore and virtualization 
dramatically influence the development of current IT systems. We study performance 
attributes of response time (RT), throughput, efficiency, and scalability of a virtualized Web 
system running on a multicore server. We build virtual machines (VMs) for a Web application, 
and use distributed stress tests to measure RTs and throughputs under varied combinations of 
virtual cores (VCs) and VM instances. Their gains, efficiencies and scalabilities are also 
computed and compared. Our experimental and analytic results indicate: 1) A system can 
perform and scale much better by adopting multiple single-VC VMs than by single 
multiple-VC VM. 2) The system capacity gain is proportional to the number of VM instances 
run, but not proportional to the number of VCs allocated in a VM. 3) A system with more VMs 
or VCs has higher physical CPU utilization, but lower vCPU utilization. 4) The maximum 
throughput gain is less than VM or VC gain. 5) Per-core computing efficiency does not 
correlate to the quality of VCs or VMs employed. The outcomes can provide valuable 
guidelines for selecting instance types provided by public Cloud providers and load balancing 
planning for Web systems. 
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1. Introduction 

Information technology (IT) has been advancing very fast during the last three decades. Since 
the invention of World Wide Web in 1989, IT has become a vital and significant part of all 
business operations as well as daily lives. It provides business operations benefits of 
convenience, efficiency, flexibility, accuracy, productivity, and innovation. How to provide 
reliable, stable, fast, secure, and easy-to-use IT service systems is a big challenge to IT 
engineers. When designing an IT service system, many factors have to be considered, such as 
cost, functionality, performance, reliability, energy consumption [1]. Performance is one 
critical factor. Performance metrics of computing systems include response time (RT), 
availability, latency, throughput (TP), efficiency, and scalability [2-4]. Performance 
enhancement has been an important and attractive subject for researchers and IT professionals 
as well. Possible methods to enhance performance are parallel computing [5], distributed and 
Cloud systems [4], load balancing (LB), and special purpose processors. 

Cloud computing is an emerging technology that sparks both research and industrial 
interests [3]. Many Cloud systems use modern virtualization technology [6]. Classical 
virtualization techniques were invented in 1960’s [7]. They are parts of operating systems 
(OSes) nowadays. The modern virtualization goes down to hardware abstraction layer [4]. 
Hypervisors are added between the hardware and application software with guest OSes. For 
modern virtualization, an application can be packaged with the needed guest OS and other 
service software into a virtual machine (VM) image. Each VM basically is an independent 
entity. A VM can request more than one virtual core (or vCPU) for computing. VMs with 
different guest OSes are able to run on the same hypervisor. The benefits from modern 
virtualization include server consolidation, managed execution and isolation, portability, 
efficient use of resources, easier to deploy application software, reducing the complexity of 
system management, flexibility, security, and consuming less energy [8, 9]. Some popular 
hypervisors are VMWare, Citrix Xen, Microsoft Hyper-V, and KVM. 

The Web-based technology is still popular and used by many software applications such as 
websites, portals, Web mails, social networking, search engines, e-commence, and blogs. A 
Web application can be deployed on a public Cloud, private Cloud, or traditional Web server. 
The workload characterization and service performance of websites are major concerns to 
their providers. Most current microprocessors contain multiple cores in a single chip, which 
definitely boost computing power. By utilizing these new technologies, the performance of 
Web systems can be enhanced tremendously. 

In this paper, we study how the performance and scalability of Web systems are affected by 
different configurations of VMs and vCPUs. Data are collected, analyzed, and compared to 
evaluate the performance metrics of RT and TP, their gain and efficiency, and scalability. The 
outcomes provide a rule of thumb for engineers for the selection of instance types provided by 
public Cloud providers, capacity planning, design of LB mechanisms, and task scheduling / 
distribution for Cloud and Web services. 

The rest of the paper is organized as follows. Section 2 briefly covers the background, 
related works and the motivation of the paper. In section 3, the test environment is depicted, 
and notations to be used are defined. Section 4 presents the results of three experiments on 
three performance metrics: response time, throughput, and CPU utilization. Then the 
performance gains, efficiencies, and scalability are evaluated and compared in sections 5. The 
conclusion and possible future researches are described in section 6. 
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2. Background and Motivation 
Many software developers use Web technology to design their applications. A popular Web 
application may attract millions of users with a huge amount of connections a day. In addition, 
it may encounter a sudden surge of requests in a short time, a burst phenomenon. Such an 
example is the online broadcast of a popular special event (such as an Olympic Game). 
Millions of people or more may link to the website to watch the event simultaneously. The 
system needs to be capable of handling normal large traffic and burst phenomenon. The Web 
application provider needs to know the workload characterization and performance attributes 
of the production system, so that a high-quality service can be provided. 

The workload characterization studies user request (type and volume), traffic pattern, 
response size, session length, hit rate, resource demand, resource usage, interval between 
requests, site popularity, and others. Some researches use level approach [10]; some running 
Web applications on physical computers [11, 12], VMs [13], and Cloud systems [14]. 
Understanding the workload characterization helps engineers on capacity planning, resource 
management, and performance tuning [11, 13]. In addition to workload characterization, the 
study of performance attributes of a system can also help enhance the quality of the system. 

The multicore technology increases the computing power. The study of how a multicore 
chip enhances the performance of a Web system is a main research topic currently. Veal and 
Foong studied the performance scalability of a multicore Web server on a physical computer 
[15]. The throughput of the system scaled up 4.8x from single core to eight cores. They stated 
that the primary bottleneck was the address bus capacity. Hashemian et al. studied the 
scalability of  a Web system with two quad-core chips for two different types of workloads, i.e. 
static and dynamic requests of Web pages. The system scaled up differently for different types 
of workloads [16, 17]. Cui et al. performed scalability study for 2 OLTP applications using an 
8-core chip [18]. The speedups were 3.68 and 5.26, respectively. They found out that the main 
bottleneck was database buffer pool and synchronization. Harji et al. studied the performance 
improvement for two different Web server architectures: event-driven and pipelined [19]. 
They declared that good implementation and fine-tuning could improve the performance of 
Web servers better than Web architecture. 

How virtualized Web systems perform attracts many researchers’ interests. The study by 
Park et al. identified that the mapping of physical cores to virtual cores (vCPU) was one major 
source of performance variation [20]. It could cause performance drop up to 22%. They also 
studied the similarities and dissimilarities among three hypervisors. NasiriGerdeh et al. 
analyzed the performance of Xen-based Web systems [21]. Their experiments showed the 
response time of the tested system was 2.5 times longer on Xen than on a native server, due to 
the overhead of schduling domains and I/O handling by Xen. Chen et al. studied the scalability 
behavior for multicore network and CPU-intensive applications [22]. They identified load 
imbalance with respect to per-core workload and proposed a queueing model to predict 
expected performances and mitigate observed bottlenecks. 

Load balancing (LB) is also an approach to enhance the performance of a Web system.  LB 
can be used in many different areas such as parallel computing, distributed systems, 
Web-based applications, and Cloud computing [3]. It is a common and essential mechanism 
for handling large volumes of requests for Cloud and Web-based services. LB uses a load 
balancer or an algorithm to distribute the whole workloads to a set of servers and keep each 
server with a reasonable amount of workloads. Hence the system can respond every request in 
a reasonable duration of time. LB can serve for specific purpose (i.e. for one single application) 
or general purpose (i.e. for different applications). It can be static or dynamic type [23, 24]. For 
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static LB, once a job is dispatched to a server, it will stay on it till the job is completed. For 
dynamic LB, the job may be migrated to another server if the hosting server has a heavy 
workload or for other purposes. In addition, LB may work in a homogeneous (i.e. using the 
same type of servers) or heterogeneous environment (i.e. using different types of servers). 
Many LB algorithms have been developed for various scenarios [3, 23-28].  

In a production data center, engineers typically adopt commercial, mature products to 
deploy a Web system either on a private Cloud or a public Cloud, instead of implementing an 
“experimental” load distribution or scheduling algorithm. When employing the 
above-mentioned cutting-edge technologies under such a circumstance, a systematic method 
to study the performance attributes of a deployed Web system helps them understand the 
characteristics of their system and workloads. The outcomes of performance research can 
provide a guideline for them to plan and arrange computing resources, properly invoke a VM 
instance when needed at the runtime, and efficiently utilize the available resources. Our 
research is to study how to achieve a good or acceptable performance for a Web system using 
a commercial hypervisor, multicore blade servers, and a load balancer. The performance 
metrics studied are RT and TP, their gain and efficiencies, scalability, and CPU utilization. 
Our research outcomes will provide IT professionals a good reference for planning and 
deploying their Web or Cloud systems. 

3. Test Environment and Notations 
Static load testing is used to collect test data and compute the statistics of the RT and TP of the 
system under test (SUT). Fig. 1 shows the structure of the test environment. It consists of four 
functional parts: Test Generator, Load Balancer, Application, and Database. The test 
environment is homogeneous, i.e. all servers are identical, which are Cisco UCS blade B200 
M3 with specification shown in Table 1. They all run Hyper-V version 3.0 in Windows Server 
2012 as the virtualization platform. The guest OSes of all VMs are Windows Server 2008 R2. 

The Test Generator resides on one physical server. It generates requests to feed into the 
SUT. Microsoft Visual Studio 2010 Load Test is used to perform the distributed stress test. It 
simulates multiple users visiting one same website simultanously. The Load Tester lets the 
user define the test flow and test parameters such as user size, test duration, workload model, 
and think time [11, 29]. It feeds the above test specification to the Test Controller, which 
manages Test Agents and collects the test data. A Test Agent simulates a group of users and, 
based on the test specification, generates and feeds test requests to the Load Balancer. Each 
block in the Tester Generator in Fig. 1 is a VM with four virtual cores, 4,096 megabytes of 
memory, and one 10-Gbps network card. 

The Load Balancer is a commercial product, i.e. A10 AX2500. It has the following 
specification: Intel Xeon chip with 2.27-GHz clock, 6 gigabytes of memory, one 8x1-Gbps 
cooper network interface card, 10 Gbps application throughput, 300,000/second (and 
195,000/second) maximum layer-2 (and layer-7) connections. It provides static LB algorithms 
such as round-robin, weighted round-robin, least-connection, weighted least-connection. In 
our experiments, the least-connection is used. Other algorithms can be used too.
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Fig. 1. The structure of the test environment. 

 
Table 1. The specification of the test servers. 

Feature Specification 

Brand Cisco UCS 
blade servers 

Processor type Intel Xeon 
E5-2640 

Clock frequency 2.5 GHz 
Number of processor chips 2 

Cores per chip 6 
Total processor cores 12 = 6 * 2 

Memory size 96 gigabytes 
Network bandwidth 10 Gbps 

 
In our test environment, there is only one single application as the SUT. A VM image is 

created to contain the application and the needed software with assigned virtual cores (vCPUs). 
A VM image can possess 1, 2, 3, 4, 6, or 12 vCPUs, 4096 megabytes of memory, and 10-Gbps 
network bandwidth with Windows Server 2008 R2 as the guest OS. Mulitple VM instances 
run simultaneously on one or several servers to serve user requests. The application is a 
Web-based course-election software which is being used by one of our schools to serve its 
students online. The application runs on a Cloud system. A student goes through several web 
pages to complete his/her selection of courses. To be closer to reality, the think time is added 
into test requests simulating possible users’ activities (such as typing, thinking, waiting) 
during the process. If the VM instance of an application is unable to handle a request, an error 
message (e.g. “HTTP 500 Internal Server Error”) will be returned to the requester. In that case, 
an error is recorded and the request has no response time. 

The Database resides on its own physical server. The Database Management System 
(DBMS) is Microsoft SQL Server 2008 R2. A VM is created for the DBMS with 12 vCPUs, 
40,960 megabytes of memory, and one 10-Gbps network card. The DBMS is capable of 
handling all database requests. So the DBMS is not a bottleneck in our test cases. Since it is a 
part of the system, its processing time is included in the total response time of a request. 

Some notations and abbreviations are defined here for the convenience of reference. 
 S(q, r) = a Web system running q VM instances with r virtual cores (vCPUs) in each VM 

instance. q is also referred as #VM, and r as #VC. #vCPU = the quantity of vCPUs. Total 
#vCPU in a system is denoted by Qc . Qc = (q × r ) for S(q, r). 

 RT = response time; TP = throughput, MaxTP = maximum TP. The performance, RT, 
and TP of S(q, r) are denoted by P(q, r), RT(q, r), and TP(q, r), respectively. 

 PG(q, r) = the performance gain of S(q, r) with respect to S(1, 1). S(1, 1) is the reference 
system with simplest configuration of #VM=#VC=1. For RT, PGRT(q, r) = RT(1, 1) / 
RT(q, r). For TP, PGTP(q, r) = TP(q, r) / TP(1, 1). 

 PE(q, r) = PG(q, r)/Qc = the performance efficiency of S(q, r). 
 TG = test group; ExTGy = test group y in experiment x.  
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 CSes = concurrent sessions. A session (or user session) is a continuous time interval (and 
the activities within it) from login to logoff by a user requesting the service by the Web 
system. #CS =  the number of current sessions. 

4. Experiments and Results 
Three experiments are performed with different combinations of #VM and #VC. For a test run, 
the Test Generator feeds the SUT with a constant #CS at any moment for a duration of 20 
minutes. The same test run is performed three times to form a test case. Some sessions may fail. 
Let Wt and Ws be the total numbers of generated sessions (G sessions) and successfully 
processed sessions (S sessions) for a test case, respectively. The error rate=(Wt-Ws)/Wt. Due 
to limited space, diagrams of error rates are not presented in the paper. 

When calculating RT, the think time is taken out. That is, the RT of a S session = (actual 
measured time – think time). The think time is not a key parameter influencing the 
characteristic of the RT of a system, because the RTs of test cases with think time and those 
without think time are strongly correlated [30]. When calculating the mean of  RTs for a test 
case, only the RTs within ±3σ (standard deviation) from S sessions are included in the 
calculation. These sessions are referred to “valid sessions” (V sessions). The TP of a test case 
is defined as the average number of V sessions per minute per test run, i.e. TP = (total number 
of V sessions of the test case) / (3×20) sessions / minute. A session consists of 89 HTTP GET 
requests and 14 HTTP POST requests. 

The configurations for the following three experiments are shown in Tables 2 to 4 below, 
for ease of reference and comparison. 

 
Table 2. One VM instance with variable vCPUs. 

Test Group Total #vCPU = (#VM) x (#VC) 
1 1 = 1 x 1 
2 2 = 1 x 2 
3 3 = 1 x 3 
4 4 = 1 x 4 
5 6 = 1 x 6 
6 12 = 1 x 12 

 
Table 3. Variable VM instances with one vCPU per VM instance. 

Test Group Total #vCPU = (#VM) x (#VC) 
1 1 = 1 x 1 
2 2 = 2 x 1 
3 3 = 3 x 1 
4 4 = 4 x 1 
5 6 = 6 x 1 
6  12 = 12 x 1 

 
Table 4. Variable combinations of VM instances and vCPUs. 
Test Group Total #vCPU = (#VM) x (#VC) 

1 12 = 1 x 12 
2 12 = 2 x 6 
3 12 = 3 x 4 
4 12 = 4 x 3 
5 12 = 6 x 2 
6  12 = 12 x 1 
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4.1 Experiment 1: Variable Virtual Cores 
In experiment 1, we study the performance of S(1, r). There is only one VM instance, which 
have 1, 2, 3, 4, 6, or 12 vCPUs, as shown in Table 2. This is equivalent to simulating a 
physical computer with multiple processors by virtualization. Fig. 2 shows RTs and TPs of the 
TGs in the experiment. #CS = 10, 50, 100, 200, …, 1500. The TPs begin to saturate around 
#CS=250, then start to degrade around #CS=900 (over capacity). It indicates the system 
capacity gain is limited, even for #VC=12. The system S(1, r) may have the similar bus issues 
mentioned in [15]. The MaxTP is 378 sessions / minute with TG6 at #CS=400.  As expected, 
RT(1, r1) < RT(1, r2) and TP(1, r1) > TP(1, r2), where r1> r2. RT(1, r1) increases slower than 
RT(1, r2) for r1> r2, because a system with more vCPUs has larger processing capacity, and 
hence lowers the queue times of the requests. 
 

 
Fig. 2. The response times and throughputs of experiment 1. 

 

4.2 Experiment 2: Variable Virtual Machine Instances 
In this experiment, we study the performance of S(q, 1). The system runs 1, 2, 3, 4, 6, or 12 
VM instances with #VC=1 for all TGs, as shown in Table 3. This is equivalent to simulating 
multiple physical computers with one processor each by virtualization. Fig. 3 shows the RTs 
and TPs of the TGs in the experiment.  #CS = 10, 50, 100, …, 3000. Fig. 3(b) shows that the 
TPs of TG1 and TG2 decrease to very low values after #CS=1100 and 2300, respectively, due 
to over capacity. The TPs start to saturate in the range of 250≤#CS≤1500. All RT curves seem 
to be linear. It is obvious that RT(q1, 1) < RT(q2, 1) and TP(q1, 1) > TP(q2, 1), where q1>q2. The 
MaxTP is 1285 sessions / minute with TG6 at #CS = 1900. From both RT and TP curves, the 
system capacity gain is proportional to #VM gain. The system with #VM>2 is able to  handle 
high workloads. 

4.3 Experiment 3: Variable Combinations of VM Instances and Virtual Cores 
In experiment 3, we study the performance of S(q, r) with q×r =12. The configuration is shown 
in Table 4. Fig. 4 shows the RTs and TPs of the TGs in the experiment. #CS = 10, 50, 100, …, 
3000. From RT and TP curves, all TGs behave similarly, but with different capacities. RT(q1, 
r1) < RT(q2, r2) and TP(q1, r1) > TP(q2, r2), where q1×r1 = q2×r2 and q1>q2. It shows that the 
system performs much better with larger #VM than with larger #vCPU. 
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Fig. 3. The response times and throughputs of experiment 2. 

 
 

 
Fig. 4. The response times and throughputs of experiment 3. 

 
 

4.4 The Comparison of CPU Utilizations 
Fig. 5 shows the average physical CPU utilizations for experiments 1 and 2. The adopted 
server has 12 physical cores. It shows that the system with more vCPUs (or VMs) has higher 
physical CPU utilization. The maximum average utilizations for E1TG6 and E2TG6 are 75.57% 
and 96%, respectively, for both Qc = 12. For E1TG1 and E2TG1 (i.e. #vCPU=1), the average 
physical CPU utilizations only reach 20%. It indicates that VM method (experiment 2) can 
reach higher maximum CPU utilization than VC method (experiment 1). 

Fig. 6 shows average vCPU utilizations for experiments 1 and 2. The system with more 
vCPUs (or VMs) has lower vCPU utilization. This is opposite to the physical CPU utilization. 
It implies a VM does not need so many vCPUs. Several test groups almost reach to 100% of 
vCPU utilization for large #CS. Fig. 6 also indicates that VM method (experiment 2) can reach 
higher maximum vCPU utilization than VC method (experiment 1) for large #CS. 
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Fig. 5. The average physical CPU utilizations of experiments 1 and 2. 

 
 

 
Fig. 6. The average vCPU utilizations of experiments 1 and 2. 

 
 
The experimental results from this section are summarized in the following. 

1. RT(1, r1) < RT(1, r2) for r1>r2. RT(q1, 1) < RT(q2, 1) for q1>q2. TP(1, r1) > TP(1, r2) for 
r1>r2 before systems degrade. TP(q1, 1) > TP(q2, 1) for q1>q2. More virtual cores or VM 
instances perform better. 

2. RT(q1, r1) < RT(q2, r2), TP(q1, r1) > TP(q2, r2), and the higher the ratio q1/q2, the higher the 
ratio RT(q2, r2)/RT(q1, r1), for q1×r1=q2×r2 and q1>q2. A system performs better by adopting 
multiple single-core VM instances than by adopting single multiple–core VM.  

3. The system capacity of S(q1, r1) is larger than that of S(q2, r2), where q1×r1=q2×r2 
and q1>q2. The system capacity gain is proportional to the number of VM instances 
adopted, but not to the number of virtual cores assigned in a VM. 

4. A system with more #VM or #VC has higher physical CPU utilizations and lower 
vCPU utilization. 
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Similar small-scale experiments are also performed with VMWare vSphere 5.1. Our 
preliminary results show that the performance curves of the SUT on VMWare and on Hyper-V 
behave similarly. That indicates different virtualization platforms may cause a minor 
performance difference for a Web system running on them. In addition, all VMs in our 
experiments are given 4 gigabytes of memory. Memory usage data are collected and studied. 
In all test cases, the SUT consumes less than 4 gigabytes of memory. So, in our experiments, 
memory does not affect our performance study. Due to the limited space, we are unable to 
include those results and diagrams in the paper. 

5. Performance Gain, Efficiency and Scalability 
In this section, we will look into the performance gains, efficiencies, and scalability from the 
data we collect in section 4. We will do comparison across experiments. E1TG1 or S(1, 1) is 
used as the reference for comparison. An individual gain is calculated from a pair of RT or TP 
values. An efficiency is the corresponding gain divided by Qc. Note that E1TG1 = E2TG1, 
E1TG6 = E3TG1, and E2TG6 = E3TG6 (both test groups are S(12, 1)). 

5.1 Response Time Gains and Efficiencies of Experiment 1 
Fig. 7 shows the RT gains and efficiencies of experiment 1 with respect to (w.r.t.) E1TG1. 
Only in a small range of #CS, RT gains and efficiencies are reasonably high. Generally, 
PGRT(1, r1) > PGRT(1, r2) for r1>r2, but not the case for PE. PE < 1 for small or large #CS. The 
cause of the bottleneck mentioned in [15] may apply to this case. All PG and PE curves are 
bell-shaped with long small-valued asymptotic tails. It indicates that given extra vCPUs does 
not enhance the performance much for large amount of user sessions. 
 

 
Fig. 7. The response time gains and efficiencies of experiment 1. 

 

5.2 Response Time Gains and Efficiencies of Experiment 2 
Fig. 8 shows the RT gains and efficiencies of experiment 2 w.r.t. E1TG1. All curves have 
similar shapes. For small #CS, E2TG5 has higher PE, but for large #CS, E2TG6 has higher PE. 
PGRT(q1, 1) > PGRT(q2, 1), where q1>q2. All PG and PE curves are bell-shaped too, but last 
longer at the top and degrade slower, compared with those in Fig. 7. 
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Fig. 8. The response time gains and efficiencies of experiment 2. 

 

5.3 Response Time Gains and Efficiencies of Experiment 3 
All TGs in experiment 3 have Qc=12. So we calculate RT gains and efficiencies w.r.t. E3TG1 
first, then w.r.t. E1TG1, so that comparison can be studied from different viewpoints. We also 
compare PGRT(q1, r1) and PGRT(q2, r2), where q1×r1=q2×r2, see Fig. 11 and Fig. 12. 

Fig. 9 and Fig. 10 show the RT gains and efficiencies of experiment 3 w.r.t. E3TG1 and 
w.r.t. E1TG1, respectively. It shows PGRT(q1, r1) > PGRT(q2, r2), where q1×r1=q2×r2 and q1>q2. 
That is, the RT gain is larger by adopting more VMs than by more vCPUs. The #VM of a 
system affects its RT gain. RT efficiency is not proportional to #VM. In Fig. 9, asymptotic 
curves of PG and PE are close. 

Fig. 11 shows the RTs of the systems with the same Qc. Four pairs of test groups presented 
in Fig. 11 are (E1TG2, E2TG2), (E1TG4, E2TG4), (E1TG5, E2TG5), and (E1TG6, E2TG6) 
with Qc=2, 4, 6, and 12, respectively. Again it confirms that a system performs better by 
adopting more VMs than by adopting more vCPUs. Fig. 12 shows the relative RT gains of 
these four pairs of systems, each pair having the same Qc. 
 

 
Fig. 9. The response time gains and efficiencies of experiment 3 with respect to E3TG1 
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Fig. 10. The response time gains and efficiencies of experiment 3 with respect to E1TG1. 

 
 

 
Fig. 11. The response times of 4 pairs of systems with the same #vCPU. 

 

 
Fig. 12. The RT ratios of four pairs of systems, each pair having the same total number of vCPUs. 
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5.4 Peak Response Time Gains and Efficiencies 
Table 5 and Fig. 13 show the peak RT gains and efficiencies of all test groups. The peak RT 
gains are obtained from Figs. 7(a), 8(a), and 10(a), and listed at column 4 of Table 5. All peak 
RT gains are compared w.r.t. E1TG1. For a particular row, the value of column 5 = (the value 
of column 4) / (the value of column 3). The peak RT gain of S(12, 1) is roughly 3.7 times larger 
than that of S(1, 12). The response time improvement of a system by adding more vCPUs is 
limited. For peak RT efficiency, VM method has higher values than VC method. 
 

Table 5. The peak response time gains and efficiencies of all test groups. 
VM Instances  #vCPU / VM  Total 

#vCPU 
Peak RT 

Gain 
Peak RT 

Efficiency 
1 1 1 1.00 1.00 
1 2 2 3.26 1.63 
1 3 3 7.03 2.34 
1 4 4 12.17 3.04 
1 6 6 11.07 1.85 
1 12 12 15.96 1.33 
1 1 1 1.00 1.00 
2 1 2 6.37 3.54 
3 1 3 16.13 5.38 
4 1 4 24.51 6.13 
6 1 6 39.66 6.61 

12 1 12 60.18 5.02 
1 12 12 15.96 1.33 
2 6 12 28.17 2.35 
3 4 12 45.92 3.83 
4 3 12 55.10 4.59 
6 2 12 52.97 4.41 

12 1 12 60.18 5.02 
 

 
Fig. 13. The peak response time gains and efficiencies of all test groups. 
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5.5 Maximum Throughputs, Gains and Efficiencies 
Table 6 and Fig. 14 show the MaxTPs and their corresponding gains and efficiencies of all 
TGs. From Fig. 2(b), 3(b), and 4(b), the MaxTPs are listed at column 4 of Table 6. The value 
of column 5 at row r is equal to (the value of column 4 at row r) / (the value of column 4 at row 
1). For a particular row, the value of column 6 = (the value of column 5) / (the value of column 
3). The MaxTP relates to the capacity of the system; the high, the better. Obviously, a system 
with more #VM or #VC can have larger MaxTP and gain. In terms of efficiency, the result is 
opposite. Also the MaxTP and efficiency of S(q1, r1) are larger than those of S(q2, r2) where 
q1×r1=q2×r2 and q1> q2. 

 
Table 6. The maximum throughputs, gains and efficiencies of all test groups. 

VM Instances #vCPU / VM Total #vCPU MaxTP  MaxTP Gain MaxTP Efficiency 
1 1 1 157 1.00 1.00 
1 2 2 214 1.36 0.68 
1 3 3 285 1.82 0.61 
1 4 4 347 2.21 0.55 
1 6 6 310 1.97 0.33 
1 12 12 378 2.41 0.20 
1 1 1 157 1.00 1.00 
2 1 2 303 1.93 0.96 
3 1 3 453 2.89 0.96 
4 1 4 582 3.71 0.93 
6 1 6 838 5.34 0.89 
12 1 12 1285 8.18 0.68 
1 12 12 378 2.41 0.20 
2 6 12 617 3.93 0.33 
3 4 12 836 5.32 0.44 
4 3 12 932 5.94 0.49 
6 2 12 955 6.08 0.51 
12 1 12 1285 8.18 0.68 

 

 
Fig. 14. The maximum throughput gains and efficiencies of all test groups. 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 11, November 2016                            5433 

5.6 Scalability 
Fig. 15 shows the scalabilities of a system at VM and virtual core (VC) levels w.r.t. RT and TP. 
At VC level, the scalability starts to saturate at #vCPU=4. That means, a system scales up only 
to four vCPUs. This result is similar to the one in [15]. The scalability curves at VM level are 
close to linear. It indicates that the scalability of the system is much higher at VM level than at 
VC level. 
 

 
Fig. 15. The scalabilities at VM and virtual core levels 

 
The analytic results in this section is the following. 
1. For response time gain: PG(1, r1) > PG(1, r2) for r1>r2. PG(q1, 1) > PG(q2, 1) for q1>q2. In 

general, the larger #VM or #VC, the higher the response time gain. PG(q1, r1) > PG(q2, r2) for 
q1×r1=q2×r2 and q1>q2. 

2. The response time efficiency does not correlate to #VM or #VC. But PE(q1, r1) > PE(q2, r2) 
for q1×r1=q2×r2 and q1>q2. 

3. For peak response time gain: Peak PG(m, 1) > peak PG(1, m). Peak PG(q1, r1) > peak PG(q2, 
r2) for q1×r1=q2×r2 and q1>q2. The peak response time efficiency has the same results as peak 
response time gain. 

4. For maximum throughput: MaxTP(q1, 1) > MaxTP(q2, 1) for q1>q2. MaxTP (q1, r1) > 
MaxTP (q2, r2) for q1×r1=q2×r2 and q1>q2. The maximum throughput gain has the same 
results as maximum throughput, and is less than #VM or #VC gain. 

5. The maximum throughput efficiency decreases as #VM or #VC increases. But MaxTP 
efficiency of S(q1, r1) > MaxTP efficiency of S(q2, r2) for q1×r1=q2×r2 and q1>q2. 

6. The scalability of the system is much higher at VM level than at virtual core level. The 
latter saturates at low #vCPU. 

6. Conclusions and Future Development 
Modern virtualization and multicore technologies emerge around one and a-half decade ago. 
They remarkably change the approaches of designing and deploying computing and IT 
systems. To study how these technologies affect the performance of Cloud/Web systems, 
experiments are designed to cover test cases with variable number of virtual cores (VCs) and 
VMs. The experimental data of performance attributes provide valuable  information of the 
capacity, performance, and scalability of the system. We show that the way of  configuring 
VMs makes the system perform differently. Running n single-core VM instacnes performs 
much better than running single VM instance with n VCs. But the former may utilize more 
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system resources (e.g. memory).  
Our experimental approach allows engineers of a production data center to study the 

performance attributes of their Web system running either on a private Cloud or public Cloud. 
The experimental outcomes provide valuable guidelines to engineers for capacity planning, 
design of load balancing mechanisms, and task scheduling /distribution for Cloud and Web 
services. Public Cloud providers provide different instance types for users. An engineer can 
build a single-core VM with sufficient memory or select a suitable single-core VM instance 
type from a public Cloud for her application. Then based on the experimental performance 
curves, she can find out the number of VM instances she needs for the response time and 
throughput requirements of the application. The number of VM instances can be adjusted 
dynamically according to the actual workloads.  

In the future, similar studies can be performed on public and hybrid Clouds. The same 
approach may be used to study how different load balancing algorithms affect the system 
performance, capacity, and scalability. Researches could be done on performance under 
general purpose heterogeneous or dynamic environments. Also one could study how other 
related elements (such as memory, disk I/O, network bandwidth) affect the system 
performance. Eventually methods or rules of thumb may be developed to design optimal 
configuration of systems to satisfy user requirements and specific workload characterization. 
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