
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 12, Dec. 2016 5375
Copyright ⓒ2016 KSII

IOMMU Para-Virtualization for Efficient and
Secure DMA in Virtual Machines

Hongwei Tang1,2,3, Qiang Li2,3, Shengzhong Feng1,3, Xiaofang Zhao2,3 and Yan Jin2,3

1 Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences
Shenzhen, 518055 - China

[e-mail: tanghongwei@ict.ac.cn, sz.feng@siat.ac.cn]
2 Institute of Computing Technology, Chinese Academy of Sciences

Beijing, 100190 - China
 [e-mail: liqiang@ncic.ac.cn, zhaoxf@ict.ac.cn, jinyan@ncic.ac.cn]

3 University of Chinese Academy of Sciences
Beijing, 100049 - China

*Corresponding author: Hongwei Tang

Received August 14, 2016; revised November 3, 2016; accepted November 15, 2016;
published December 31, 2016

Abstract

IOMMU is a hardware unit that is indispensable for DMA. Besides address translation and
remapping, it also provides I/O virtual address space isolation among devices and memory
access control on DMA transactions. However, currently commodity virtualization platforms
lack of IOMMU virtualization, so that the virtual machines are vulnerable to DMA security
threats. Previous works focus only on DMA security problem of directly assigned devices.
Moreover, these solutions either introduce significant overhead or require modifications on
the guest OS to optimize performance, and none can achieve high I/O efficiency and good
compatibility with the guest OS simultaneously, which are both necessary for production
environments. However, for simulated virtual devices the DMA security problem also exists,
and previous works cannot solve this problem. The reason behind that is IOMMU circuits on
the host do not work for this kind of devices as DMA operations of which are simulated by
memory copy of CPU. Motivated by the above observations, we propose an IOMMU
para-virtualization solution called PVIOMMU, which provides general functionalities
especially DMA security guarantees for both directly assigned devices and simulated devices.
The prototype of PVIOMMU is implemented in Qemu/KVM based on the virtio framework
and can be dynamically loaded into guest kernel as a module, As a result, modifying and
rebuilding guest kernel are not required. In addition, the device model of Qemu is revised to
implement DMA access control by separating the device simulator from the address space of
the guest virtual machine. Experimental evaluations on three kinds of network devices
including Intel I210 (1Gbps), simulated E1000 (1Gbps) and IB ConnectX-3 (40Gbps) show
that, PVIOMMU introduces little overhead on DMA transactions, and in general the network
I/O performance is close to that in the native KVM implementation without IOMMU
virtualization.

Keywords: IOMMU virtualization, para-virtualization, DMA security, virtio, simulated
device

This work has been partly supported by the National Natural Science Foundation of China (NSFC) 61402444.

http://dx.doi.org/10.3837/tiis.2016.12.014 ISSN : 1976-7277

mailto:zhaoxf@ict.ac.cn

5376 Hongwei Tang et al.: IOMMU Para-Virtualization for Security and Performance

1. Introduction

Virtualization techniques help to improve the resource utilization and energy efficiency of
large-scale data centers[26][27][28]. Based on virtualization, resources can be flexibly
scheduled in finer granularity for different goals, such as QoS guarantees, energy consumption
and etc[29][30]. Currently, virtualization is essential to resource management and scheduling
in cloud data centers. However, in commodity virtualization platforms, there is a critical
hardware component which has not been virtualized yet. It is I/O memory management unit
(IOMMU). In general, IOMMU provides address remapping and address translation for DMA
transactions. On this basis, it enables I/O virtual address space isolation between devices and
memory access control on DMA transactions, by which it protects the system against
malicious or buggy device drivers. In addition, it provides compatibilities with legacy devices
which do not support memory address wider than 32 bits [1][10][11][20].

Without IOMMU virtualization, it adopts a simple method to support DMA of directly
assigned devices in virtual machines [2][6]. At the VM launching phase, the VMM provisions
host memory pages for all the guest memory and pins them until the termination of the VM.
Moreover, it creates static DMA mappings in I/O page table, which map from guest memory
pages to host memory pages, and are just the same as that in shadow page table. In the guest,
all the devices reside in the memory address space, so that DMA engines of the devices access
guest memory with guest memory address which is finally translated into host memory
address by the IOMMU on the host. As all the guest memory is statically mapped in the I/O
page table, malicious or buggy device drivers might tamper or corrupt guest memory using
DMA, which is known as DMA security problem [7][8][21][22[23]. Furthermore, the ability
of memory overcommitment of virtualization is missing in this case [4][10][12].

To solve this problem, [10] proposed vIOMMU, an IOMMU emulation solution which
exposes an emulated IOMMU to the unmodified guests. The VMM intercepts and monitors
access to the registers of the emulated IOMMU in guest, and manages the DMA mappings on
the host IOMMU accordingly. The performance evaluations on vIOMMU shows that it
introduces significant overhead and results in performance degradation on DMA. For example,
the throughput of apache benchmark drops by about 50%. [9] presents an on-demand mapping
strategy, in which the guest OS directly manages DMA mappings in the host I/O page table via
hypercalls. It modifies guest devices drivers batching multiple map or unmap requests in a
single hypercall to optimize performance.

Current solutions mainly have the following two deficiencies. On the one hand, the previous
works focus only on directly assigned devices, while the DMA security problem also exists in
simulated virtual devices. As for the latter, DMA transactions are simulated by memory copy
between guest memory and host memory for virtual devices. So the hardware IOMMU on the
host cannot provide access control for this kind of DMA transactions. On the other hand, I/O
performance guarantee and guest OS compatiblity are both requisite for a practicle solution in
production environments, however, the current solutions cannot meet this requirement.

In this paper, an IOMMU para-virtualization solution called PVIOMMU is proposed which
provides efficient and secure DMA for both directly assigned devices and simulated virtual
devices in the guest, and requires no code modification on the guest OS. In addition, it
supports live migration and memory overcommitment for virtual machines. The main
contributions of this paper are listed as follows.

1) We put forward the DMA security problem on simulated virtual devices, and gives a
general IOMMU para-virtualization solution for both directly assigned devices and simulated
virtual devices. For both kinds of devices, PVIOMMU provides isolation between I/O virtual

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 12, December 2016 5377

address spaces and memory access control on DMA transactions. A prototype of PVIOMMU
is implemented based on the virtio framework [19] in KVM. The virtio frontend driver for
PVIOMMU can be dynamically loaded into the guest kernel without modification or
rebuilding of the guest kernel. Furthermore, to provide access control for DMA of virtual
devices, a revised device model for Qemu is proposed which isolates the address space of the
device emulator with that of the guest virtual machine.

2) We present the virtualization performance results of three kinds of network interface
cards, including Intel I210 (1Gbps, directly assigned to the guest), simulated E1000 (1Gbps)
and IB connectX-3 (40Gbps, virtual function directly assigned to the guest). Table 1 a)
summarizes the performance differences between PVIOMMU and the native KVM
implementation for Intel I210 and simulated E1000, while Table 1 b) shows that of IB. The
results indicate that PVIOMMU achieves high efficiency close to that under native KVM
without IOMMU virtualization, and can be used in production environments.

Table 1 a) Performance differences on ethernet NICs
 Intel I210 Simulated E1000
TCP_STREAM 0% 0%
TCP_RR -15% -7%
UDP_RR -6% -8%
Apache
bench/10000reqs

-12% +3%

Apache
bench/100000reqs

-3.5% +5%

Table 1 b) Performance differences on IB

 Send Write
Latency(usec) +0.013 +0.002
Bandwidth(MB/s) -3 -5

The rest of the paper is organized in the following manner: Section 2 describes the DMA

security problem in virtual machines. Section 3 gives a brief review of related works on
IOMMU virtualization. Section 4 gives the design and implementation of PVIOMMU and
optimization methods on both the guest side and the host side. Section 5 presents the
experimental results, and finally Section 6 concludes the paper and mentions the future work.

2 DMA Security Problem in Virtual Machine
The framework adopted by KVM providing DMA support for devices in virtual machines is
shown in Fig. 1. In general, there is no explicit IOMMU support in virtual machines. In guest
OS, the configuration on IOMMU is usually set to “nommu”. In this case, for DMA buffer
mapping requests from the upper layers (as in Fig. 1 the DMA Mapping layer and the Device
Driver layer), the “nommu” driver simply returns the guest physical memory addresses (abbr.
GPAs) of the buffer as the device’s I/O virtual addresses. As a result, the GPAs are directly
used by the device to perform DMA [4][12].

For directly assigned device (including virtual function of SRIOV-enabled device), the
DMA engine is implemented as hardware circuits and the I/O virtual address (the same as
GPA in this case) in DMA transaction is automatically translated to host physical memory
address (abbr. HPA) by the IOMMU based on the I/O page table [1][6][20]. Because all the
devices share the same I/O virtual address space which is just the guest memory address space,

5378 Hongwei Tang et al.: IOMMU Para-Virtualization for Security and Performance

there is only one I/O page table on the host that is shared by guest devices. In essence, the I/O
page table is nothing but a copy of the shadow page table, and is set up statically when creating
the virtual machine.

In Qemu, the device simulator is implemented in the I/O thread which shares the same
address space with guest VM. And DMA operations are implemented as memory copy
between the guest memory and the virtual devices. As a result, the I/O thread is able to access
any location of the guest memory, so does the simulative DMA engine. Before the simulative
DMA engine performs memory copy, the memory virtualization module translates GPA in
DMA transaction into host virtual memory address (HVA), which is used by the I/O thread to
access the guest memory.

From the framework we find that, for both directly assigned device and simulated device,
there are no I/O virtual address space isolation in the guest. Furthermore, neither validity
checking nor access control for DMA transactions are provided on the host side, so that
malicious or buggy guest device drivers could mange to tamper or corrupt the guest memory
effortlessly. In summary, the current framework lacks of protections on DMA security.
Especially for simulated device, to our knowledge, there are no related works on this problem
currently.

Fig. 1. Current framework of DMA support for VMs

3 Related Works
[10] presents a simulated Intel IOMMU by software, which has the advantages of complete
transparency to the guest OS. However, it introduces considerable overhead on DMA
transactions, especially a lot of context switches between the guest and the host. To improve
performance, it utilizes extra host physical CPU cores to run the emulation codes of vIOMMU,
and relaxes the security protections by delaying the retirement of IOTLB entries with different
strategies. [9] proposes an on-demand DMA mapping strategy for directly assigned PCI
devices where the guest OS proactively instructs the VMM to map or unmap DMA buffers in

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 12, December 2016 5379

a dynamic manner through hypercalls. It needs modifications on device drivers to adopt
optimizations, such as batching map or unmap requests in a single hypercall to reduce
overhead. As for performance results, it only evaluates the effect of the map cache inside the
guest, in the perspective of both cache hit rate and CPU utilization, and no I/O performance
results are published. [3] discusses the basic considerations on IOMMU support for
virtualization. The basic design requirements that they emphasized include memory isolation,
fault isolation and virtualized operating system support. They implement a proof-of-concept
prototype on Xen while performance evaluations are less presented.

[14] discusses different IOMMU-based protection strategies in both the security perspective
and the performance perspective. The single-use mapping strategy provides inter-guest
protection with the greatest cost. While the shared mapping strategy tries to reuse established
mappings rather than generating a new one for each I/O transaction. As the extreme of reuse,
the direct mapping strategy allows maximum reuse of IOMMU mappings and can minimize
runtime overhead. From the security perspective, the protection level drops as the performance
improves for each strategy. The mapping strategy adopted by KVM can be categorized as the
direct one [4][12], which requires pinning the guest’s entire memory on the host, so that
memory overcommitment is disabled. Furthermore, all the devices inside the guest reside in
the same address space with the guest memory, and there is no intra-guest DMA isolation or
protection provided. As in this case, the overhead on DMA mapping/unmaping is minimized,
so we take it as the performance baseline for comparison with PVIOMMU.

In addtion, there are related works on performance evaluations and optimizaitons of
IOMMU. [5] presents peformance characteristics of commodity IOMMUs in Linux, both on
bare metal and Xen hypervisor. It evalutes the throughput and CPU utilization of disk I/O and
network I/O workloads with and without IOMMU. [15] discusses the negative impact of
IOTLB cache misses and propses software and hardware enhancements on IOMMU to reduce
miss rate. [13] presents scalable IOMMU management design and address two bottlenecks,
including assignment of I/O virtual addresses (abbr. IOVAs) and management of IOTLB.

4 System Design and Implementation

4.1 Overall architecture
The overall architecture of PVIOMMU is shown in Fig. 2. It is composed of the guest part and
the host part. In the guest, a standard virtio frontend driver is presented as we called the
PVIOMMU frontend, which provides an Intel-IOMMU like driver abstraction and general
driver APIs (e.g. dma_map_ops in Linux) to the DMA Mapping Layer of the guest OS. As a
result, there is no need to modify guest device driver to use PVIOMMU. Furthermore, the
PVIOMMU frontend manages an isolated I/O virtual address space for each device, and
allocates address ranges for DMA transactions dynamically.

5380 Hongwei Tang et al.: IOMMU Para-Virtualization for Security and Performance

Fig. 2. Overal architecture of PVIOMMU

On the host side, it consists of I/O page tables, hardware IOMMU for directly assigned
devices, software IOMMU for simulated devices, and the PVIOMMU backend driver. There
is a dedicated I/O page table for each guest device. For directly assigned device, the I/O page
table is referenced by hardware IOMMU providing mappings from devices’ guest I/O virtual
addresses (abbr. GIOVAs) to HPAs, while that for simulated devices is referenced by software
IOMMU and provides mappings from GIOVAs to HVAs. The hardware IOMMU is
commodity one such as Intel-IOMMU. While software IOMMU is implemented in the VMM
and its design is detailed in subsection 4.2. The hardware and software IOMMUs provide I/O
address translation and access control on DMA buffers based on I/O page tables. The
PVIOMMU backend dynamically creates or tears down DMA mappings in I/O page tables.
Furthermore, the backend manages the dynamic allocation of host page frames for guest DMA
buffers, which enables thin-provisioning and overcommitment of guest memory.

The implementation of PVIOMMU is based on the virtio framework. Linux takes the
virtio_ring as the transport implementation of virtio, which is composed of the descriptor array,
the available ring and the used ring. The guest chains prepared buffers into the descriptor array,
and indicates which descriptor chains are ready for use by the VMM in the available ring.
While the VMM indicates which descriptor chains it has used in the used ring [19]. We adopt
a single queue for both map and unmap requests. From the guest’s view, a map request is
composed of two parts: a read-only virtio_dma_mapping structure (as shown in Table 2) and a
single write-only byte that indicates completion status. Similarly, an unmap request is also
composed of two parts: a read-only virtio_dma_unmapping structure (as shown in Table 3)
and a single write-only byte that indicates completion status. We put the two parts into two
free entries of the descriptor table, and chain them together by the ‘next’ field, as is shown in
Fig. 3.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 12, December 2016 5381

Table 2. data structure of map request
struct virtio_dma_mapping {

__u64 devid; // the ID of guest device which this mapping is for
__u32 type; // 0 --- MAP
__u32 len; // len of the gpas/giovas array
__u64 direction; // DMA_TO_DEVICE or DMA_FROM_DEVICE
__u64 giovas[0]; // array of the GIOVAs to map
__u32 gpas[0]; // array of the GPAs to map, giovas[i]<--> gpas[i]

};

Table 3. data structure of unmap request
struct virtio_dma_unmapping{

__u64 devid; // the ID of guest device which this unmapping is for
__u32 type; // 1 --- UNMAP
__u32 len; // len of the giovas array .
__u64 giovas[0]; // array of the GIOVAs to unmap

};

Fig. 3. Organization of PVIOMMU request queue

The PVIOMMU frontend calls virtqueue_add [12][19] function of Linux kernel to add

request to the descriptor array, and kicks (virtqueue_kick [12][19] function of Linux kernel)
the PVIOMMU backend. The virtqueue_kick function will merge multiple requests and notify
the backend with only one hypercall, which reduces the overhead of context switching
between the guest and the host. Then, the frontend calls virtqueue_get_buf [12][19] function
iteratively to poll completed requests from the backend. When waiting for the completion, it
utilizes the cpu_relax [12] function to do a lightweight polling which can also reduce power
consumption. On the host side, a kernel thread named vhost-pviommu is created for each guest
which services the guest’s requests. Upon notification from the guest, the kernel thread
unmarshals the request and checks the type field to identify which kind of request it is. ‘0’
means map request while ‘1’ means unmap request. After handling the request, the kernel
thread writes completion status into the write-only byte, ‘0’ means success while non-zero
value means some fault and gives the fault number.

In summary, compared with the full-virtualization solution in [10], efficiency of
interactions between the guest and the host is significantly improved because a lot of context
switches are avoided. Moreover, in that case it has to traverse the guest I/O page table to get

5382 Hongwei Tang et al.: IOMMU Para-Virtualization for Security and Performance

the GIOVAs and GPAs by recursively walking through the shadow page table [11], while in
PVIOMMU, they are directly passed to the backend through the virtio queue.

4.2 DMA access control for simulated devices

In Qemu’s device model, device simulation is implemented by the dedicated I/O thread which
runs in the same address space of guest virtual machine from the host’s view [25]. Therefore,
the I/O thread can access any byte in the guest memory, and so does the simulative DMA
engine. To enforce access control for DMA security, we revise the device model by separating
the address space of the device simulator from that of guest virtual machine. In this model, the
device simulator runs in a dedicated I/O process, and is dynamically granted access
permissions on guest DMA buffers. The mechanism behind DMA access control for simulated
devices is shown in Fig. 4. As also a simulated device, the software IOMMU is implemented
in the I/O process, exposing API to translate GIOVAs to HVAs for the simulative DMA
engine. The I/O page table for simulated device is placed in user space of the I/O process,
where the software IOMMU and the PVIOMMU backend can both access with pointers
directly.

 Create DMA mappings

Given <GIOVA, GPA> pairs by the frontend, the backend firstly traverses the shadow page
table (EPT on Intel systems) to translate the GPAs to HPAs. If any host page frame is not
present, it will try to allocate one and fill the shadow page table. Then, the backend locates a
free virtual memory area (VMA) in the virtual address space of the I/O process, and maps the
host page frames corresponding to the HPAs into the VMA with proper access permissions,
for example, read permission indicates DMA_TO_DEVICE and write permission indicates
DMA_FROM_DEVICE. Finally, the backend creates mappings from GIOVAs to HVAs in
the I/O page table and specifies the legitimate directions accordingly.

 Address translation

Before accessing guest DMA buffers, the simulative DMA engine calls the software
IOMMU to do address translation. The software IOMMU walks through the I/O page table to
locate HVAs with GIOVAs as the indexes. Moreover, it also checks whether the DMA
transaction is allowable against the DMA directions recorded in the I/O page table entries.
Because address translation is on the critical path of DMA transaction, placing I/O page tables
in user space can avoid the overhead of user-kernel context switching.

 Tear down DMA mappings

First, the backend removes the mappings for specific GIOVAs in the I/O page table. Then it
unmaps the corresponding VMA of the I/O process from the host page frames. In this way, the
access permissions on the guest DMA buffer are revoked from the I/O process.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 12, December 2016 5383

Fig. 4. Mechanism of DMA access control for simulated devices

4.3 Workflow of PVIOMMU
The workflow of creating DMA mappings with PVIOMMU is shown in Fig. 5:

Step 1: The device driver prepares memory buffer for this DMA transaction.
Step 2: The frontend allocates address ranges for the DMA buffer from the device’s I/O

address space.
Step 3: The mapping request is added to the available ring of the virtqueue. And if this is no

pending requests, the virtio transportation will notify the backend to process by issuing a
hypercall.

Step 4: The backend consumes request from the available ring.
Step 5: The backend locates the host page frames for the guest DMA buffer by walking

through the shadow page table. If any page frame has not been allocated yet, it will try to
allocate one.

Step 6: If the DMA is for simulated device, the backend will grant access permission on the
guest DMA buffer to the device simulator by mapping the host page frames into the address
space of the I/O process.

Step 7: The backend creates DMA mappings in the I/O page table for the device.
Step 8: The backend writes the completion status into the status byte, and adds the response

to the used ring.
Step 9: The frontend gets the completion status from the used ring, and returns to the device

driver.
Step 10: The DMA mapping process is finished, and the device driver proceeds with the

DMA transaction.

5384 Hongwei Tang et al.: IOMMU Para-Virtualization for Security and Performance

Fig. 5. Workflow of PVIOMMU on creating DMA mappings.

Compared with the workflow of DMA mapping in guest serviced by native KVM, Step 2 to
9 are added by PVIOMMU. From these steps, Step 3 which might introduce guest-host
context switches, and Step 5 that walks through the shadow page table and may try to allocate
page frames, are more costly operations. Motivated by this observation, we propose
optimization methods to reduce the overhead in subsection 4.4 and 4.5.

4.4 Migration of PVIOMMU
Dynamic resource scheduling on virtualization platform relies mainly on two parts, the
mechanism part which contains virtualization of hardware devices and live migration of
virtual machine, and the policy part such as resource schedulers and scheduling algorithms.
Essentially, PVIOMMU is a new virtual hardware device of virtual machine, so live migration
of the virtual device is an essential function to support dynamic resource scheduling.

The states of PVIOMMU that should be migrated mainly include the general virtio states
and established DMA mappings. The general virtio states such as virtqueues are migrated
using the interfaces provides by Qemu/KVM [12]. Currently, directly assigned devices do not
support live migration because internal information of such devices cannot be migrated.
Accordingly, we focus on the migration of established DMA mappings for simulated devices.
Because HVA in I/O page table is local address in I/O process’ address space, it will be invalid
on the destination host. To migrate DMA mappings, an intermediary mapping structure in
guest view is generated from the host I/O page table on the source host. The intermediary
mapping structure is shown in Table 4. Each such structure describes a VMA for guest DMA
mappings in the I/O process. After the intermediary mapping structures are copied to the
destination host, DMA mappings are reconstructed in the I/O process’ address space and a
new I/O page table is generated. After the guest resumes, the fake DMA engine continues
operation with new mappings specified in I/O page table.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 12, December 2016 5385

Table 4. defination of the intermediary mapping structure
struct dma_mapping_guestview {

__u64 devid; // the ID of guest device which this mapping is for
__u32 len; // len of the gpas array
__u32 direction; // DMA_TO_DEVICE or DMA_FROM_DEVICE
__u64 giova_start, giova_end; // start and end of the guest I/O virtual address space
__u64 gpas[0]; // array of the GPAs to map

};

4.5 Guest-side optimization
We have traced the DMA mapping creation operations in the driver of Intel I210 Ethernet NIC
inside the virtual machine when performing basic network micro-benchmarking by Netperf
[16]. Table 5 shows the statistics collected during the test.

Table 5. Summary of DMA mapping creation traces
Test Case Test

Duration
(seconds)

DMA Mapping
Create OPS. #

Count of
Involved Pages
(4KB-size) #

Reuse Rate
Of each page #

TCP_STREAM 10 82864 95 872
TCP_RR 10 59535 80 744
UDP_STREAM 10 14 12 1
UDP_RR 10 63367 11 5761

Considering the reverse process, each create operation is paired with a remove operation, so

the count of DMA mapping manipulations doubles. As described in the workflow in
subsection 4.3, these operations are expensive and may affect I/O performance. From the table
we also find that, the page frames for DMA buffers are heavily reused. This observation
motivates us to adopt guest-side optimization to reduce overhead.

The basic idea of the optimization is to delay the actual removal of DMA mappings in the
host I/O page table and give chances to subsequent DMA transactions to reuse them. The
frontend preserves a dedicated cache for each device to store reusable DMA mappings. A
reusable mapping is the one that the device driver has released but the frontend has not
removed from the host I/O page table. When creating a DMA mapping, the frontend first
searches in the cache for reusable mappings with the GPAs of the DMA buffer. If a reusable
mapping is found, the corresponding GIOVA will be reassigned to the DMA buffer and the
process of creating mapping on the host for it is omitted. Since I/O page table on host is
indexed by I/O virtual address [12], we name the cache as Reverse Translation Cache (abbr.
RTC).

The structure for the RTC is shown in Fig. 6. For search efficiency and space cost, the RTC
is organized as a combination of an adaptive radix-tree (abbr. ART) [31] and a FIFO queue.
ART is a variation data structure to solve the problem of excessive worst-case space
consumption of radix tree by adaptively designing compact and efficient data structures for
nodes. To store DMA mappings in the ART, GPA is used as the key with the span of 8 (for
byte alignment), and GIOVA is used as the value. In our case, 6 types of inner nodes and 6
types of leaf nodes are adopt, which are described as in Table 6. Leaf nodes are extensions
based on corresponding inner nodes with the addition of a REUSING bit for each DMA
mapping. When the REUSING bit is set (1), it means that the cached mapping is currently
being reused. Moreover, GIOVA (64 bits long) is stored in the child pointer array of leaf node.

5386 Hongwei Tang et al.: IOMMU Para-Virtualization for Security and Performance

A DMA mapping should be invalidated after it has been cached in the RTC for a limited
time to reduce security risks. For this purpose, firstly a timer is employed to split time into
cycles of fixed time duration (T). Secondly, to effectively track expiration time for each
mapping with low overhead, the coarser-grain cycle is used as the basic time unit. Finally, the
cycle when a mapping is added into the RTC is recorded, and after fixed number (C) of cycles
it will be invalidated. In this manner, mappings added at the same cycle are invalidated
together, that further reduces the overhead on interacting with the PVIOMMU backend. As
shown in Fig. 6, a FIFO queue is used for assisting to implement mapping invalidation
periodically. Element of the FIFO queue is composed of a pointer to leaf node and a GPA,
which represents a cached mapping. A special separator element is added to the FIFO queue at
each timeout of the timer. By this means, mappings added at different cycles are separated in
the FIFO queue. At any time, only the unexpired mappings which are added at the latest C
cycles are stored in the FIFO queue. Suppose the oldest mappings in the FIFO queue are added
at cycle numbered as N, they are also at the head of the FIFO queue. When the timer timeouts,
a new cycle numbered as N+C starts, and mappings added in cycle N are removed from the
FIFO queue and the ART. And then, the frontend issues a single request to the backend to
delete the mappings in batch mode. It’s worth mentioning that, mapping that is currently being
reused (with the corresponding REUSING bit set in leaf node) should only be removed from
the FIFO queue and be kept in the ART, because when it is released it will be added into the
RTC again. The extra 1-bit REUSING flag can reduce the cost of insertion and deletion for
reused mappings. In our implementation, T is set to 10 seconds and C is set to 3, so a mapping
might be cached in the RTC for [30, 40) seconds.

Fig. 6. Structure of the Reverse Translation Cache.

Table 6. Types of nodes (inner and leaf)
Node
Type

Lengt
h of
Key
Arra
y

Lengt
h of
Point
er
Arra
y

of
Keys/
Pointe
rs

Storage
Organization

Search
Method
 for Keys

Comparisons
on key bytes
for
BinarySearch

Comparisons
on key bytes
for
InsertSort

Node2 2 2 1~2 Sorted keys are
stored in the key
array, and
corresponding

Binary
search

<= 2 <=1

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 12, December 2016 5387

child pointers are
stored in the same
position of the
pointer array.

Node4 4 4 3~4 The same as above Binary
search

<= 3 <=3

Node16 16 16 5~16 The same as above Binary
search

<= 5 <=15

Node32 32 32 17~32 The same as above Binary
search

<= 6 <=31

Node64 256 64 33~64 The key array is
indexed with key
bytes directly and
stores indexes into
the pointer array
for corresponding
key.

Indexing
with key
bytes

0 0

Node25
6

256 256 65~25
6

The pointer array
is indexed with
key bytes directly
and no key array is
provided.

Indexing
with key
bytes

0 0

 insert a DMA mapping into the RTC

The pseudo-code of the insert algorithm is shown in Fig. 7 a) and b). It starts from the root
of the ART, recursively searches with key bytes of the given GPA, creates inner nodes and leaf
node on the path if they have not yet existed, and finally stores the GIOVA in the
corresponding position of the child pointer array in the leaf node. If the mapping is already in
the ART, it is simply marked as being reused with the REUSING bit set. Binary search
algorithm (BinarySearch) is used to search a specific key byte in nodes with less than or
equal to 32 keys. While for nodes of type Node64 or Node256, the key byte is directly used as
the index into the key array or the child pointer array respectively, so that no key comparisons
are needed. If a key byte does not exist, it will be added into the corresponding node in sorted
order (InsertSort). If a node is already full before the addition of the key byte, the node
will be expanded to the next bigger node type (Grow). Finally, the pointer to the leaf node and
the GPA are appended to the tail of the FIFO queue.

Algorithm1a): insert a DMA mapping into the ART
01: InsertART(GPA, GIOVA, root)
02: return Insert(GPA, GIOVA, 63, root)

Fig. 7 a) pseudo-code for inserting a DMA mapping into the ART

Algorithm1b): insert a key byte into a node
01: Insert(GPA, GIOVA, bit, node)
02: if bit == 63
03: key = GPA[bit, bit-3]
04: bit = bit - 4
05: else
06: key = GPA[bit, bit - 7]
07: bit = bit - 8
08: if node.type is Node2, Node4, Node16 or Node32
09: if (index = BinarySearch(key, node.keys, node.length)) < node.length
10: if(bit <= 4)
11: /*the key is aready exist in the leaf node indexed by index

5388 Hongwei Tang et al.: IOMMU Para-Virtualization for Security and Performance

12: *Set the reusing bit of the mapping*/
13: Set_bit(node.reusing, index)
14: return ALREAD_EXIST
15: else
16: return Insert(GPA, GIOVA, bit, node.childpointers[index])
17: else
18: /*the key is not exist in the array, insert it*/
19: if node.length is less than 2, 4, 16 or 32 respectively
20: index = InsertSort(key, node.keys, node.length)
21: if bit <= 4
22: node.childpointers[index] = GIOVA
23: Clear_bit(node.reusing, index)
24: return SUCCESS
25: else /*allocate a new smallest node*/
26: node.childpointers[index] = new Node2()
27: return Insert(GPA, GIOVA, bit, node.childpointers[index])
28: else
29: /*the node array is full, we should grow the node to a bigger one*/
30: node = Grow(node)
31: if node.type is Node4, Node16, Node32
32: index = InsertSort(key, node.keys, node.length)
33: if bit <= 4
34: node.childpointers[index] = GIOVA
35: Clear_bit(node.reusing, index)
36: return SUCCESS
37: else
38: node.childpointers[index] = new Node2()
39: return Insert(GPA, GIOVA, bit, node.childpointers[index])
40: else /*node type is Node64 after growing*/
41: index = node.keys[key]
42: if bit <= 4
43: node.childpointers[index] = GIOVA
44: Clear_bit(node.reusing, index)
45: return SUCCESS
46: else
47: node.childpointers[index] = new Node2()
48: return Insert(GPA, GIOVA, bit, node.childpointers[index])
49: else if node.type is Node64
50: if (index = node.keys[key]) < node.length
51: if bit <= 4
52: Set_bit(node.reusing, key)
53: return ALREAD_EXIST
54: else
55: return Insert(GPA, GIOVA, bit, node.childpointers[index])
56: else if node.length < 64
57: node.keys[key] = index = node.length +1
58: if bit <= 4
59: node.childpointers[index] = GIOVA
60: Clear_bit(node.reusing, index)
61: return SUCCESS
62: else
63: node.childpointers[index] = new Node2()
64: return Insert(GPA, GIOVA, bit, node.childpointers[index])
65: else
66: node = Grow(node) /*node.type is Node256 after growing*/
67: if bit <= 4
68: node.childpointers[key] = GIOVA
69: Clear_bit(node.reusing, key)
70: return SUCCESS
71: else

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 12, December 2016 5389

72: node.childpointers[key] = new Node2()
73: return Insert(GPA, GIOVA, bit, node.childpointers[key])
74: else /*node.type is Node256*/
75: if node.childpointers[key] != NULL
76: if bit <= 4
77: Set_bit(node.reusing, key)
78: return ALREAD_EXIST
79: else
80: return Insert(GPA, GIOVA, bit, node.childpointers[key])
81: else
82: if bit <= 4
83: node.childpointers[key] = GIOVA
84: Clear_bit(node.reusing, key)
85: return SUCCESS
86: else
87: node.childpointers[key] = new Node2()
88: return Insert(GPA, GIOVA, bit, node.childpointers[key])

Fig. 7 b) pseudo-code for recursively inserting a key byte into a node

 Search a DMA mapping in the RTC

The pseudo-code of the search algorithm is shown in Fig. 8 a) and b). It recursively
searches from the root down to leaf node. The same as node insert, for nodes of type Node2,
Node4, Node16 or Node32, binary search algorithm is adopted to search the given key byte in
the node. While for nodes of type Node64, the key byte is used as the index into the key array,
and the value specifies the index into the child pointer array. For nodes of type Node256, the
key byte is the index into the child pointer array.

Algorithm2a): search in the ART for reusable DMA mapping with given GPA
01: SearchART(GPA, root)
02: return Search(GPA, 63, root)

Fig. 8 a) pseudo-code for searching the ART

Algorithm2a): search in a node for the given key byte
01: Search(GPA, bit, node)
02: if bit < 12
03: return node
04: if node == NULL
05: return NULL
06: if bit == 63
07: key = GPA[bit:bit-3]
08: bit = bit -4
09: else
10: key = GPA[bit:bit-7]
11: bit = bit-8
12: if node is.type is Node2, Node4, Node16 or Node32
13: if (index = BinarySearch(key, node.keys, node.length)) < node.length
14: return Search(GPA, bit, node.childpointers[index])
15: else
16: return NULL
17: else if node.type is Node64
18: if(index = node.keys[key]) <= node.length
19: return Search(GPA, bit, node.childpointers[index])
20: else
21: return NULL
22: else
23: return Search(GPA, bit, node.childpointers[key])

Fig. 8 b) pseudo-code for recursively searching key byte in node

5390 Hongwei Tang et al.: IOMMU Para-Virtualization for Security and Performance

 Delete a DMA mapping from the RTC

The pseudo-code of the delete algorithm is shown in Fig. 9. It is the reverse process of insert.
It deletes the values indexed by the key byte from the key array and the child pointer array of
the node, and shrinks the node if the number of the left elements is less than the lower limit for
the node type (Shrink). If the node is of type Node2 and the only element is deleted, the node
will be removed and its parent node will be updated accordingly. In addition, the
corresponding element in the FIFO queue is also removed.

Algorithm3: delete a DMA mapping from the ART
01: Delete(node, GPA, bit)
02: if bit >= 64
03: return SUCCESS
04: if node == NULL
05: return SUCCESS
06: if bit == 60
07: key = GPA[bit+3:bit]
08: else
09: key = GPA[bit+7:bit]
10: if node.type is Node2, Node4, Node16 or Node32
11: index = BinarySearch(key, node.keys, node.length)
12: if index >= node.length
13: return NOT_EXIST
14: /*move the elements from index to the tail one position forward*/
15: Move1(node.keys, index)
16: Move1(node.childpointers, index)
17: parent = node.parent
18: if node.length is 0, 2, 4, 16 for the types respectively
19: Shrink(node) /*Node2->NULL,Node4->Node2,Node16->Node4,… */
20: if node == NULL
21: /*if the node is deleted, we should delete
22: *the corresponding key byte in parent node */
23: return Delete(parent, GPA, bit+8)
24: else if node.type is Node64
25: if node.keys[key] >= node.length
26: return NOT_EXIST
27: node.length = node.length – 1
28: if node.length == 32
29: Shrink(node) /*Node64->Node32*/
30: else
31: node.childpointers[node.keys[key]] = NULL
32: node.keys[key] = node.length
33: else /*node.type if Node256*/
34: if node.childpointers[key] == NULL
35: return NOT_EXIST
36: node.length = node.length – 1
37: if node.length == 64
38: Shrink(node) /*Node256->Node64*/
39: else
40: node.childpointers[key] = NULL

Fig. 9. pseudo-code for deleting a DMA mapping from the ART

The most time-consuming operation for search/insert/delete is comparison on key byte. The
analysis on time complexity is presented in Table 7. As is depicted in the table, the time
complexity has no relationship with the number of DMA mappings cached in the RTC. Instead,
it is related to the height of the ART which depends on the width of GPA. The theoretical
maximum length of GPA is 64 bits, and currently the addressing capability of mainstream

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 12, December 2016 5391

CPUs is no more than 48 bits. Moreover, DMA mapping is in page (4096 bytes) granularity, so
the lowest 12 bits of GPA is of no use for identifying a mapping. For scalability, suppose the
size of GPA is 64 bits, the valid key length is 52 bits and the height of the ART is 7. As is
shown in Table 7, the best-case and worst-case time consumptions are all constant.

Table 7. Time complexity analysis
Operation Best Case Best-Case

Time
Complexity

Worst Case Worst-case
Time
Complexity

SearchART All the nodes on the
searching path are with
type of Node64 or
Node256

No
comparisons
on key bytes

All the nodes on
the searching
path are with
type of Node32

42 comparisons
on key bytes.

InsertART All the nodes on the
searching path are with
type of Node64 or
Node256

No
comparisons
on key bytes

All the nodes on
the searching
path are with
type of Node32
and all the nodes
donot exist on
the path.

42
(BinarySearch)
+ 217
(InsertSort) =
259
comparisons on
key bytes.

Delete All the nodes are with
type of Node64 or
Node256.

No
comparisons
on key bytes

The leaf node is
of type Node32.

6 comparisons
on the lowest
key byte.

The space consumption of each type of node varies. For each inner or leaf node, there

should be a 13-bytes extra space to store the type of the node (node.type, 1 byte), the number
of valid keys/pointers in the node (node.length, 2 bytes), the pointer to the parent node
(node.parent, 8 bytes). Especially for leaf nodes, extra space for REUSING bits is needed. For
example, leaf nodes of type Node2 or Node4 need a single byte, while that of type Node16
needs 2 bytes, and so forth. The analysis on space complexity is presented in Table 8. The best
space utilization can be achieved in that all the inner and leaf nodes are of type Node256 and
there are no NULL pointers on each node. In this case, the average space consumption for each
key byte is 8.1 bytes on inner nodes and 8.2 bytes on leaf nodes respectively. To optimize the
space consumption, the PVIOMMU frontend tries to allocate adjacent guest pages for DMA
buffers, so that more Node256 nodes are used.

Table 8. Space consumption of each types of nodes
Node
Type

Total Size of
Inner Node
(Bytes)

Total Size of
Leaf Node (Bytes)

Minimu
m
Number
of Keys

Maximu
m
Number
of Keys

Average Space
Consumption
with the Least
Keys
(Inner/Leaf)

Average Space
Consumption with
the Most Keys
(Inner/Leaf)

Node2 2*1+2*8+13 =31 2*1+2*8+13+1=3
2

1 2 31/32 15.5/16

Node4 4*1+4*8+13=49 4*1+4*8+13+1=5
0

3 4 16.3/16.7 12.3/12.5

Node16 16*1+16*8+13=
157

16*1+16*8+13+2
=159

5 16 31.4/31.8 9.8/9.9

Node32 32*1+32*8+13=
301

32*1+32*8+13+4
=305

17 32 17.7/17.9 9.4/9.5

Node64 256*1+64*8+13
=781

256*1+64*8+13+
8=789

33 64 23.7/23.9 12.2/12.3

Node256 256*8+13=2061 256*8+13+32=20
93

65 256 31.7/32.2 8.1/8.2

5392 Hongwei Tang et al.: IOMMU Para-Virtualization for Security and Performance

Finally, the lifecycle of DMA mapping with RTC in guest is described as follows.
Step 1: To create a DMA mapping in guest, the frontend first searches the RTC to find

reusable mapping entries. For GPAs found in the RTC, the corresponding mappings are reused
and marked as REUSING. While for GPAs that are not in the RTC, the frontend allocates new
GIOVAs and creates new mappings in the host I/O page table by issuing a map request to the
backend. Upon the backend completes the request, the corresponding mappings in the host I/O
page table are available.

Step 2: The device driver performs DMA on the mappings.
Step 3: When a DMA mapping is released by the device driver, it is added into the RTC.
Step 4: When the timer timeouts, expired mappings are removed from the RTC. And then,

the frontend issues a single request to the backend to remove the mappings from the host I/O
page table in batch mode.

Step 5: If a mapping is reused before invalidated, it will be marked as REUSING, so that it
will not be removed from the ART until it is released.

4.6 Host-side Optimization (HOPT)
On the critical path for creating a DMA mapping, the backend mainly completes two
operations: walking through the shadow page table to translate GPAs into HPAs, and trying to
allocate page frames if not present. Based on the above observation, we adopt the following
two measures to further reduce the overhead.

 Pre-allocated page pool

For each guest, the backend preserves a page pool to accelerate the process of dynamic page
allocation. In our implementation, the size of the page pool is 1M bytes. As is shown in Fig. 10,
a ring with 256 pointers to the pages in the pool is used for fast allocation of pages. In this case,
pages are allocated in a sequential manner from the head of available pages pointers until to
the tail.

Fig. 10. Ring of pointers to pages in the pool

When host page frames for the given GPAs are not present, the backend firstly tries to fetch
pages from the page pool. If there are not enough pages, it will resort to the host memory
allocator. Moreover, the backend monitors the usage of the page pool. If the amount of
available pages drops below the predefined threshold, in our implementation 64 pages, it
requests new pages from the host memory allocator and appends the pointers at the tail of the
ring. The space consumption of this optimization is 1026K bytes (1Mbytes + 256*8bytes), and
the time of page allocation from the pool is negligible.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 12, December 2016 5393

 Cache of the pointer to the last referenced page table

To create DMA mappings, the backend translates GPAs to HPAs by walking through the
shadow page table repeatedly. This takes hundreds to thousands of clock cycles to complete
the operation. Based on the locality principle, we adopt a cache for the GPA prefix and the
pointer to the last level (for example, the fourth level on 64-bit Linux) shadow page table that
is referenced most recently, to reduce the overhead on shadow page table walking. To translate
GPA to HPA, the backend first compares bits 20~63 of the GPA with the GPA prefix. If they
match, it locates the entry with bits 12~19 of GPA as the index into the shadow page table
referenced by the pointer. If the entry is already present, it just returns the corresponding HPA.
Otherwise, it allocates a page from the page pool and fills the entry. If not match, it will walk
through the shadow page table as usual, and finally updates the cache with the new GPA prefix
and pointer. The space consumption of this optimization is 8 bytes for the pointer cache, and
the time complexity is O(1) because one comparison is required for translating each GPA.

5 Experimental Evaluations

5.1 Methodology
 Experimental Setup

We use KVM hypervisor and CentOS 7.1.1503 running Linux 3.10.0 for both host and
guest. Our experimental setup is comprised of two Sugon I620-G20 servers, which are
dual-socket, 10-cores per socket server equipped with Intel Xeon E5-2650 V3 CPUs running
at 2.3GHz. The server (host) includes 32GB of memory, an Intel I210 1Gb NIC and a
Mellanox IB ConnectX-3 40Gb HCA card. The virtual machines are configured with 4
VCPUs and 8GB memory.

 Benchmarks

For Ethernet, we use Netperf to evaluate network throughput and latency. In addition, we
use Apache Bench [17] to evaluate the web service performance. For IB, we use the built-in
tools and IMB 4.1 [18] to measure communication performance.

 Testbed system configurations

We take the network I/O performance of virtual machines serviced by native KVM as the
baseline. As introduced in Section 2 and Section 3, the native KVM implementation on
IOMMU support for virtual machines adopts the direct mapping strategy with lowest overhead
and optimal performance, but no DMA security guarantees. Our goal is to provide a
performance as close as possible to the baseline on the premise that DMA security is
guaranteed. So we evaluate four system configurations, including PVIOMMU with no
optimization (abbreviated as PVIOMMU), PVIOMMU with reverse translation cache
(abbreviated as PVIOMMU+RTC), PVIOMMU with RTC and host-side optimizations
(abbreviated as PVIOMMU+RTC+HOPT), and the baseline in the native KVM (abbreviated
as BASELINE).

5.2 Benchmark results
For Ethernet, performance is measured on Intel I210 NIC which is directly assigned to the
guest, and simulated E1000 Ethernet NIC. While for IB, a virtual function of HCA card [24] is
assigned to the guest.

5394 Hongwei Tang et al.: IOMMU Para-Virtualization for Security and Performance

5.2.1 Ethernet-Intel I210

The results of Netperf-TCP_STREAM test on Intel I210 are shown in Fig. 11. There is no
significant difference among the four configurations at the aspect of throughput. Compared
with the BASELINE, para-virtualization of IOMMU increases CPU utilization by about 9%.
With optimizations of RTC and HOPT, CPU cycles consumed by PVIOMMU are reduced
obviously, and the CPU utilization drops close to that of the BASELINE.

941.08
941.26 941.24 941.27

34.05%27.67%26.92%25.52%

0.00%
20.00%
40.00%
60.00%
80.00%
100.00%

940
940.2
940.4
940.6
940.8

941
941.2
941.4

Tro…
CP…

Mb CP

Fig. 11. TCP Throughput and CPU utilization of I210.

Fig. 12 a) presents the performance of exchanging requests and responses between the
Netperf client and server, with packet size of 1 byte. The y-axis on the left side means amount
of transactions per second, the more the better. While the y-axis on the right side means
one-way communication latency, the shorter the better. As can be seen from the figure,
compared with the BASELINE, the latencies increased by 21usec for TCP and 13usec for
UDP when PVIOMMU is adopted, and the optimization techniques (RTC+HOPT) can further
shorten the latency gaps to 13usec and 4usec for TCP and UDP respectively. Furthermore,
RTC improves the latency dramatically, while HOPT has little promotion. Fig. 12 b) gives the
very same data but normalized against the BASELINE. Moreover, comparisons on CPU
utilization under the four configurations are presented as well. As can be seen from the curves
(CPU_UTIL_TCP_RR and CPU_UTIL_UDP_RR), PVIOMMU incurs extra CPU utilization,
and the optimization methods help to reduce CPU consumption.

55

60

65

70

75

80

85

5500

6000

6500

7000

7500

8000

8500

TCP_RR UDP_RR
TCP one-way latency UDP one-way latency

trans/s usec

0.00%
10.00%
20.00%
30.00%
40.00%
50.00%
60.00%
70.00%
80.00%
90.00%
100.00%

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05 TCP_RR
UDP_RR
CPU_UTIL_TCP_RR
CPU_UTIL_UDP_RR

nomalized transfer rates CPU%

Fig. 12 a) TCP/UDP request-response rate and one-way latency. b) Transfer rates normalized to the
BASELINE and CPU utilizations.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 12, December 2016 5395

In the Apache Bench (ab) test, it simulates a simple web browsing scenario that the client
requests a static page from the server. Fig. 13 a) and b) present the results of ab test with 100
concurrent connections. Fig. 13 a) shows different absolute request rates that can be achieved
with 10,000 and 100,000 total requests. As can be seen from the figure, RTC is the most
significant optimization for this metric. By normalized against the BASELINE, we can see
from Fig. 8 b) that, by optimizing on PVIOMMU, the request rate can achieve 96% of the
BASELINE.

10000
11000
12000
13000
14000
15000
16000
17000
18000
19000

100000 requests
10000 requests

Requests/sec

0.6
0.65

0.7
0.75

0.8
0.85

0.9
0.95

1
1.05

100000 requests
10000 requests

nomalized request rates

 Fig. 13 a) Apache Bench test. b) The results normalized to the BASELINE.

5.2.2 Ethernet- Simulated E1000

Fig. 14 presents the TCP throughput and CPU utilization of simulated E1000 NIC. As seen
from the figure, RTC optimization can boost the bandwidth to very close to the BASELINE.
As the NIC is simulated by software, more CPU cycles are consumed when transferring
packets compared with the directly assigned NIC. Although PVIOMMU increases CPU
utilization, RTC and HOPT optimizations reduce that to an even lower level than the
BASELINE. That is because that, under the BASELINE case the driver for E1000 in the guest
utilizes bounce buffers to move data between DMA buffers and user-provided buffers which
causes CPU utilization increasing.

44.03%
37.57% 35.83%

40.29%

0.00%
10.00%
20.00%
30.00%
40.00%
50.00%
60.00%
70.00%
80.00%
90.00%
100.00%

931
932
933
934
935
936
937
938
939
940
941

Troughput

CPU Util%

Mb/s CPU%

Fig. 14 TCP Throughput and CPU utilization of simulated E1000

5396 Hongwei Tang et al.: IOMMU Para-Virtualization for Security and Performance

Fig. 15 a) and b) show the results of TCP_RR and UDP_RR tests on simulated E1000. By

adopting PVIOMMU without optimization, the TCP request-response performance can
achieve about 91% of the BASELINE, while it only achieves about 75% on Intel I210 (shown
in Fig. 12 b)). The reason is that hardware DMA engine is more efficient than simulated DMA
engine, so the overhead of IOMMU virtualization is more significant in the former case.
Furthermore, as seen from the curves (CPU_UTIL_TCP_RR and CPU_UTIL_UDP_RR) in
Fig. 15 b), the CPU consumption of PVIOMMU is reduced to no more than 4% by adopting
RTC and HOPT optimizations. Overall, the CPU consumption of PVIOMMU is moderate.

100

105

110

115

120

125

130

3,700

3,800

3,900

4,000

4,100

4,200

4,300

4,400

4,500

4,600

TCP_RR UDP_RR
TCP ONE-WAY latency UDP ONE-WAY latency

Trans/s usec

0.00%
10.00%
20.00%
30.00%
40.00%
50.00%
60.00%
70.00%
80.00%
90.00%
100.00%

0.82
0.84
0.86
0.88

0.9
0.92
0.94
0.96
0.98

1
1.02

TCP_RR
UDP_RR
CPU_UTIL_TCP_RR
CPU_UTIL_UDP_RR

nomalized transfer rates CPU%

Fig. 15 a) TCP/UDP request-response and one-way latency. b) Transfer rates normalized to the

BASELINE.

Fig. 16 a) and b) shows the ab test results on simulated E1000. The results reveal that it can
get better performance with PVIOMMU compared to the native KVM implementation. In the
latter case, the guest device driver uses software IOTLB to setup static DMA mappings and
employs bounce buffer for legacy devices. The E1000 device driver uses a lot of bounce
buffers to complete DMA transaction that introduces a large amount of extra memory copies
and significant overhead. As a result, we can claim that PVIOMMU can improve performance
for devices using bounce buffer.

5900

6000

6100

6200

6300

6400

6500

6600
100000 requests

10000 requests

requests /s

0.97
0.98
0.99

1
1.01
1.02
1.03
1.04
1.05
1.06

100000 requests

10000 requests

nomalized request rates

Fig. 16 a) ab request rates on simulated E1000. b) ab request rates normalized against the BASELINE.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 12, December 2016 5397

5.2.3 IB

We use the IB verbs-level test programs (ib_write_bw, ib_write_lat, ib_send_bw and
ib_send_lat) provided with OFED to benchmark the performance of IB. ib_write_bw and
ib_write_lat measure the bandwidth and latency respectively using RDMA write transactions,
while ib_send_bw and ib_send_lat using send transactions [32]. As Fig. 17 a) shows, among
the four configurations, the disparity on bandwidth measured by ib_write_bw (17MB/s) is
more obvious than that by ib_send_bw (6MB/s). The reason is that RDMA transaction needs
more dynamic DMA mappings to access user-provided buffers, while send transaction uses
pre-registered buffers with fixed DMA mappings. After optimization, the gap is narrowed
down to about 5Mb/s. While the differences on latencies are very small among the four
configurations as is shown in Fig. 17 b).

3610
3615
3620
3625
3630
3635
3640
3645

ib_write_bw
ib_send_bw

MB/sec

0.86
0.88

0.9
0.92
0.94
0.96
0.98

1
1.02
1.04

ib_write_lat
ib_send_lat

usec

Fig. 17 a) IB bandwidth. b) IB latency.

The IMB PingPong test results are shown in Fig. 18 a) and b). The four curves almost
overlap, which indicates that the overhead of IOMMU virtualization is negligible on MPI
communications.

0

1

2

3

4

5

6

7

PVIOMMU
PVIOMMU+RTC
PVIOMMU+RTC+HOPT
BASELINE

usec

packet size

0

500

1000

1500

2000

2500

3000

3500

4000

8 16 32 64 128
256
512
1024
2048
4096
8192
16384
32768
65536
131072
262144
524288
1048576
2097152
4194304

PVIOMMU

PVIOMMU+RTC

PVIOMMU+RTC+HOPT

BASELINE

packet size

Fig. 18 a) latency results of IMB PingPong test. b) bandwidth results of IMB PingPong test.

6 Conclusion and Future Work
In this paper, we present PVIOMMU, an IOMMU para-virtualization solution to support high
efficiency and secure DMA in virtual machines. A prototype is implemented in Qemu/KVM
based on the virtio framework. Specially, to provide access control on DMA transactions of
simulated devices, we revised Qemu’s device model to separate the device emulator from the

5398 Hongwei Tang et al.: IOMMU Para-Virtualization for Security and Performance

address space of the guest virtual machine. In addition, we adopt optimizations on PVIOMMU
to further reduce virtualization overhead. On the guest side, the reverse translation cache for
DMA mappings is employed to allow reusing. While on the host side, the pre-allocated page
pool is adopted to accelerate page frame allocation for guest DMA buffers. Moreover, time for
walking through the shadow page table is shortened by caching the pointer to the last
referenced last-level shadow page table. Network performance evaluations on Intel I210 NIC,
simulated E1000 NIC and IB ConnectX-3 card show that, PVIOMMU introduces little
overhead on DMA transactions compared to the native KVM implementation, which lacks of
protections on DMA security.

GPU is another kind of device that heavily relies on DMA operations. Our future work will
extend the performance evaluation to GPU virtualization, for both simulated and
hardware-assisted vGPU. And then, we will take performance tunings and optimizations based
on the benchmarking results. In addition, we will dive deeper into resource scheduling on
virtual machine with PVIOMMU, evaluate the influence of IOMMU para-virtualization on
scheduling decisions, and study algorithms that can avoid instabilities on virtual machine
migration.

Acknowledgments
We would like to thank the anonymous reviewers and editors for their valuable suggestions
and comments to improve the quality of this paper.

References
[1] Intel, “Intel Virtualization Technology for Directed I/O Architecture Specification.”
 Article (CrossRef Link).
[2] B. Liu, L. Yang and X. Qin, “Research on Hardware I/O Passthrough in Computer Virtualization,”

in Proc. of the International Symposium on Computer Science, 2010. Article (CrossRef Link).
[3] M. Benyehuda, J. Mason, J. Xenidis, O. Krieger, L. van Doorn, J. Nakajima, A. Mallick and E.

Wahlig, “Utilizing IOMMUs for virtualization in Linux and Xen,” in Proc. of OLS ’06: The 2006
Ottawa Linux Symposium, pp. 71-86, 2006. Article (CrossRef Link).

[4] A. Kivity, Y. Kamay, D. Laor, U. Lublin and A. Liguori, “KVM: the linux virtual machine
monitor,” in Proc. of Ottawa Linux Symposium, pp. 225-230, 2007. Article (CrossRef Link).

[5] M. Benyehuda, J. Xenidis, M. Ostrowski, K. Rister, A. Bruemmer and L. van Doorn, “The price of
safety: Evaluating IOMMU performance,” in Proc. of OLS ’07: The 2007 Ottawa Linux
Symposium, pp. 9-20, 2007. Article (CrossRef Link).

[6] B. A. Yassour, M. Benyehuda and O. Wasserman, “Direct device assignment for untrusted
fully-virtualized virtual machines,” vol. 54, pp. 150-156, Yehuda, 2008. Article (CrossRef Link).

[7] M. Becher, M. Dornseif and C. N. Klein, “FireWire: all your memory are belong to us,” in Proc. of
CanSecWest Applied Security Conference, 2005. Article (CrossRef Link).

[8] R. Wojtczuk, “Subverting the Xen hypervisor,” in Proc. of Black Hat, 2008.
 Article (CrossRef Link).
[9] B. A. Yassour, M. Benyehuda and O. Wasserman, “On the DMA mapping problem in direct

device assignment,” in Proc. of SYSTOR 2010: the Haifa Experimental Systems Conference. pp.
1-12, Israel, 2010. Article (CrossRef Link).

[10] N. Amit, M. Benyehuda, D. Tsafrir and A. Schuster, “vIOMMU: efficient IOMMU emulation,” in
Proc. of the 2011 USENIX conference on USENIX annual technical conference, Portland, 2011.
Article (CrossRef Link).

http://www.intel.com/content/dam/www/public/us/en/documents/product-specifications/vt-directed-io-spec.pdf
http://www.academypublisher.com/proc/iscsct10/papers/iscsct10p353.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.183.6907
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.488.2278
http://www.mulix.org/lectures/price-of-safety/price-of-safety-haifux-jun-2007.pdf
http://www.hypervisorconsulting.com/pubs/iommu/direct-assignment-tr-0263.pdf
https://cansecwest.com/core05/2005-firewire-cansecwest.pdf
http://www.invisiblethingslab.com/bh08/papers/part1-subverting_xen.pdf
https://doi.org/10.1145/1815695.1815718
http://dl.acm.org/citation.cfm?id=2002181.2002187

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 12, December 2016 5399

[11] M. Malka, N. Amit, M. Benyehuda and D. Tsafrir, “rIOMMU: Efficient IOMMU for I/O Devices
that Employ Ring Buffers,” in Proc. of the Twentieth International Conference on Architectural
Support for Programming Languages and Operating Systems, Turkey, 2015.
Article (CrossRef Link).

[12] Linux Kernel. https://www.kernel.org/.
[13] O. Peleg, A. Morrison, B. Serebrin and D. Tsafrir, “Utilizing the IOMMU scalably,” in Proc. of the

2015 USENIX Conference on Usenix Annual Technical Conference, pp. 549-562, CA, 2015.
Article (CrossRef Link).

[14] P. Willmann, S. Rixner, A. L. Cox, “Protection strategies for direct access to virtualized I/O
devices,” in Proc. of USENIX Ann. Technical Conf. (ATC), pp. 15-28, 2008.
Article (CrossRef Link).

[15] N. Amit, M. Benyehuda and B. A. Yassour, “IOMMU: Strategies for mitigating the IOTLB
bottleneck,” in Proc. of Workshop on Interaction between Opearting Syst. & Comput. Archit.
(WIOSCA), 2010. Article (CrossRef Link).

[16] Netperf. http://www.netperf.org
[17] Apache Bench. https://httpd.apache.org/docs/2.4/programs/ab.html
[18] IMB. https://software.intel.com/en-us/articles/intel-mpi-benchmarks
[19] R. Russell, “virtio: towards a de-facto standard for virtual I/O devices,” ACM SIGOPS Operating

Syst. Review (OSR), vol. 42, pp. 95-103, 2008. Article (CrossRef Link).
[20] AMD, “AMD I/O Virtualization Technology (IOMMU) Specification (Revision 2.62),” February

2015. Article (CrossRef Link).
[21] P. Stewin and I. Bystrov, “Understanding DMA Malware,” in Proc. of the 9th Conference on

Detection of Intrusions and Malware & Vulnerability Assessment, July 2012.
Article (CrossRef Link).

[22] L. Duflot and Y. A. Perez, “Can You Still Trust Your Network Card?” in Proc. of the 13th
CanSecWest Conference (CanSecWest’10), 2010. Article (CrossRef Link).

[23] F. Sang, V. Nicomette, and Y. Deswarte, “I/O Attacks in Intel PC-based Architectures and
Countermeasures,” in Proc. of SysSec Workshop (SysSec’11), 2011. Article (CrossRef Link).

[24] J. Jose, M. Li, X. Lu, K. C. Kandalla, M. D. Arnold, and D. K. Panda, “SR-IOV support for
virtualization on infiniband clusters: Early experience,” in Proc. of Cluster Computing and the
Grid, IEEE International Symposium on. IEEE Computer Society, pp. 385-392, 2013.
Article (CrossRef Link).

[25] F. Bellard, “QEMU, a Fast and Portable Dynamic Translator,” in Proc. of the USENIX Annual
Technical Conference, pp. 41-46, 2005. Article (CrossRef Link).

[26] C. Canali, and R. Lancellotti, “A class-based virtual machine placement technique for a greener
cloud,” in Proc. of 4th. Int. Conference on Green IT Solutions (ICGREEN 2015), 2015.
Article (CrossRef Link).

[27] C. Canali, and R. Lancellotti, “Automated clustering of VMs for scalable cloud monitoring and
management,” in Proc. of the 20th International Conference on Software, Telecommunications
and Computer Networks, pp.1-5, 2012. Article (CrossRef Link).

[28] M. Shojafar, N. Cordeschi, D. Amendola, and E. Baccarelli, “Energy-saving adaptive computing
and traffic engineering for real-time-service data centers,” in Proc. of the IEEE International
Conference on Communication, pp. 1800-1806, 2015. Article (CrossRef Link).

[29] M. Shojafar, C. Canali, R. Lancellotti, and E. Baccarelli, “Minimizing
computing-plus-communication energy consumptions in virtualized networked data centers,” in
Proc. of 21th IEEE/ACM ISCC, pp. 1184-1191, 2016. Article (CrossRef Link).

[30] Z. Pooranian, M. Shojafar, R. Tavoli, M. Singhal, and A. Abraham, “A hybrid metaheuristic
algorithm for job scheduling on computational grids,” Informatica, vol. 37(2), pp. 157-164, 2013.
Article (CrossRef Link).

[31] V. Leis, A. Kemper, and T. Neumann, “The adaptive radix tree: ARTful indexing for
main-memory databases,” in Proc. of ICDE, pp. 38-49, 2013. Article (CrossRef Link).

[32] OFED. https://www.openfabrics.org/downloads/OFED/

https://doi.org/10.1145/2786763.2694355
http://dl.acm.org/citation.cfm?id=2813809
http://dl.acm.org/citation.cfm?id=1404016
http://dl.acm.org/citation.cfm?id=2185897
http://www.netperf.org/
https://httpd.apache.org/docs/2.4/programs
https://software.intel.com/en-us/articles
https://doi.org/10.1145/1400097.1400108
http://support.amd.com/TechDocs/48882_IOMMU.pdf
http://dl.acm.org/citation.cfm?id=2481806
http://www.ssi.gouv.fr/uploads/IMG/pdf/csw-trustnetworkcard.pdf
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6092759
https://doi.org/10.1109/ccgrid.2013.76
http://dl.acm.org/citation.cfm?id=1247401
http://citeseerx.ist.psu.edu/viewdoc/citations;jsessionid=7AC24C161D00203DCC34E6DF652C73A0?doi=10.1.1.715.5623
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6347581
https://doi.org/10.1109/iccw.2015.7247442
https://doi.org/10.1109/iscc.2016.7543890
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.368.1389&rep=rep1&type=pdf
http://dl.acm.org/citation.cfm?id=2511193
https://www.openfabrics.org/downloads/OFED/

5400 Hongwei Tang et al.: IOMMU Para-Virtualization for Security and Performance

Hongwei Tang is a Ph.D. candidate at the University of Chinese Academy of Sciences.
He received his B.S. degree from Nankai University (China) in 2006 and M.S. degree
from University of Chinese Academy of Sciences in 2009. Currently, he is a senior
member of China Computer Federation (CCF) and an associate professor at Institute of
Computing Technology of Chinese Academy of Sciences (ICT, CAS). His research
interests include cloud computing, virtual machine and operating system.

Qiang Li received the B.S. degree in computer science and technology in Shandong
University in 2006, and Ph.D. degree in Institute of Computing Technology in 2012. He is
an associate professor in Institute Computing Technology, Chinese Academy of
Sciences. His research interests include HPC architecture and high performance
communication.

Shengzhong Feng received his Ph.D. degrees in computer science from
Beijing Institute of Technology in 1997. He was employed by Institute of Computing
Technology, Chinese Academy of Sciences. From 2005 to 2007, he investigated gene
chip algorithm design as a visiting professor in University of Toronto, Canada. Currently,
he is the executive director of the China Mathematics Software Association and a
committee member of High Performance Computing Association. He has published over
30 research papers, most of them are indexed by SCI/EI. His research interests include
high performance computing, grid computing and bioinformatics.

Xiaofang Zhao received her Ph.D. degrees in computer science from Institute of
Computing Technology, Chinese Academy of Sciences. Currently, she is the director of
computer application research center in Institute of Computing Technology, Chinese
Academy of Sciences. She is a senior member of China Computer Federation (CCF) and a
member of Engineering and Technology Committee. Her research interests include
computer architecture of next generation, security of computer system and information
security.

Yan Jin received the B.S., M.S., and Ph.D. degrees in computer science from Harbin
Institute of Technology, Harbin, China, in 2001, 2003, and 2008, respectively. He was a
research fellow in department of Electrical and Computer Engineering, University of
Nevada, Las Vegas (UNLV) from 2008 to 2011. Since 2012, he has been an associate
professor in Institute of Computing Technology, Chinese Academy of Sciences. His
research interests include network security, cloud computing and cloud security.

