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Abstract 
 

IOMMU is a hardware unit that is indispensable for DMA. Besides address translation and 
remapping, it also provides I/O virtual address space isolation among devices and memory 
access control on DMA transactions. However, currently commodity virtualization platforms 
lack of IOMMU virtualization, so that the virtual machines are vulnerable to DMA security 
threats. Previous works focus only on DMA security problem of directly assigned devices. 
Moreover, these solutions either introduce significant overhead or require modifications on 
the guest OS to optimize performance, and none can achieve high I/O efficiency and good 
compatibility with the guest OS simultaneously, which are both necessary for production 
environments. However, for simulated virtual devices the DMA security problem also exists, 
and previous works cannot solve this problem. The reason behind that is IOMMU circuits on 
the host do not work for this kind of devices as DMA operations of which are simulated by 
memory copy of CPU. Motivated by the above observations, we propose an IOMMU 
para-virtualization solution called PVIOMMU, which provides general functionalities 
especially DMA security guarantees for both directly assigned devices and simulated devices. 
The prototype of PVIOMMU is implemented in Qemu/KVM based on the virtio framework 
and can be dynamically loaded into guest kernel as a module, As a result, modifying and 
rebuilding guest kernel are not required. In addition, the device model of Qemu is revised to 
implement DMA access control by separating the device simulator from the address space of 
the guest virtual machine. Experimental evaluations on three kinds of network devices 
including Intel I210 (1Gbps), simulated E1000 (1Gbps) and IB ConnectX-3 (40Gbps) show 
that, PVIOMMU introduces little overhead on DMA transactions, and in general the network 
I/O performance is close to that in the native KVM implementation without IOMMU 
virtualization.  
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1. Introduction 

Virtualization techniques help to improve the resource utilization and energy efficiency of 
large-scale data centers[26][27][28]. Based on virtualization, resources can be flexibly 
scheduled in finer granularity for different goals, such as QoS guarantees, energy consumption 
and etc[29][30]. Currently, virtualization is essential to resource management and scheduling 
in cloud data centers. However, in commodity virtualization platforms, there is a critical 
hardware component which has not been virtualized yet. It is I/O memory management unit 
(IOMMU). In general, IOMMU provides address remapping and address translation for DMA 
transactions. On this basis, it enables I/O virtual address space isolation between devices and 
memory access control on DMA transactions, by which it protects the system against 
malicious or buggy device drivers. In addition, it provides compatibilities with legacy devices 
which do not support memory address wider than 32 bits [1][10][11][20].  

Without IOMMU virtualization, it adopts a simple method to support DMA of directly 
assigned devices in virtual machines [2][6]. At the VM launching phase, the VMM provisions 
host memory pages for all the guest memory and pins them until the termination of the VM. 
Moreover, it creates static DMA mappings in I/O page table, which map from guest memory 
pages to host memory pages, and are just the same as that in shadow page table. In the guest, 
all the devices reside in the memory address space, so that DMA engines of the devices access 
guest memory with guest memory address which is finally translated into host memory 
address by the IOMMU on the host. As all the guest memory is statically mapped in the I/O 
page table, malicious or buggy device drivers might tamper or corrupt guest memory using 
DMA, which is known as DMA security problem [7][8][21][22[23]. Furthermore, the ability 
of memory overcommitment of virtualization is missing in this case [4][10][12]. 

To solve this problem, [10] proposed vIOMMU, an IOMMU emulation solution which 
exposes an emulated IOMMU to the unmodified guests. The VMM intercepts and monitors 
access to the registers of the emulated IOMMU in guest, and manages the DMA mappings on 
the host IOMMU accordingly. The performance evaluations on vIOMMU shows that it 
introduces significant overhead and results in performance degradation on DMA. For example, 
the throughput of apache benchmark drops by about 50%. [9] presents an on-demand mapping 
strategy, in which the guest OS directly manages DMA mappings in the host I/O page table via 
hypercalls. It modifies guest devices drivers batching multiple map or unmap requests in a 
single hypercall to optimize performance. 

Current solutions mainly have the following two deficiencies. On the one hand, the previous 
works focus only on directly assigned devices, while the DMA security problem also exists in 
simulated virtual devices. As for the latter, DMA transactions are simulated by memory copy 
between guest memory and host memory for virtual devices. So the hardware IOMMU on the 
host cannot provide access control for this kind of DMA transactions. On the other hand, I/O 
performance guarantee and guest OS compatiblity are both requisite for a practicle solution in 
production environments, however, the current solutions cannot meet this requirement.  

In this paper, an IOMMU para-virtualization solution called PVIOMMU is proposed which 
provides efficient and secure DMA for both directly assigned devices and simulated virtual 
devices in the guest, and requires no code modification on the guest OS. In addition, it 
supports live migration and memory overcommitment for virtual machines. The main 
contributions of this paper are listed as follows. 

1) We put forward the DMA security problem on simulated virtual devices, and gives a 
general IOMMU para-virtualization solution for both directly assigned devices and simulated 
virtual devices. For both kinds of devices, PVIOMMU provides isolation between I/O virtual 
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address spaces and memory access control on DMA transactions. A prototype of PVIOMMU 
is implemented based on the virtio framework [19] in KVM. The virtio frontend driver for 
PVIOMMU can be dynamically loaded into the guest kernel without modification or 
rebuilding of the guest kernel. Furthermore, to provide access control for DMA of virtual 
devices, a revised device model for Qemu is proposed which isolates the address space of the 
device emulator with that of the guest virtual machine.  

2) We present the virtualization performance results of three kinds of network interface 
cards, including Intel I210 (1Gbps, directly assigned to the guest), simulated E1000 (1Gbps) 
and IB connectX-3 (40Gbps, virtual function directly assigned to the guest). Table 1 a) 
summarizes the performance differences between PVIOMMU and the native KVM 
implementation for Intel I210 and simulated E1000, while Table 1 b) shows that of IB. The 
results indicate that PVIOMMU achieves high efficiency close to that under native KVM 
without IOMMU virtualization, and can be used in production environments. 
 

Table 1 a) Performance differences on ethernet NICs 
 Intel I210 Simulated E1000 
TCP_STREAM 0% 0% 
TCP_RR -15% -7% 
UDP_RR -6% -8% 
Apache 
bench/10000reqs 

-12% +3% 

Apache 
bench/100000reqs 

-3.5% +5% 

 
Table 1 b) Performance differences on IB 

 Send Write 
Latency(usec) +0.013 +0.002 
Bandwidth(MB/s) -3 -5 

 
The rest of the paper is organized in the following manner: Section 2 describes the DMA 

security problem in virtual machines. Section 3 gives a brief review of related works on 
IOMMU virtualization. Section 4 gives the design and implementation of PVIOMMU and 
optimization methods on both the guest side and the host side. Section 5 presents the 
experimental results, and finally Section 6 concludes the paper and mentions the future work.  

2   DMA Security Problem in Virtual Machine 
The framework adopted by KVM providing DMA support for devices in virtual machines is 
shown in Fig. 1. In general, there is no explicit IOMMU support in virtual machines. In guest 
OS, the configuration on IOMMU is usually set to “nommu”. In this case, for DMA buffer 
mapping requests from the upper layers (as in Fig. 1 the DMA Mapping layer and the Device 
Driver layer), the “nommu” driver simply returns the guest physical memory addresses (abbr. 
GPAs) of the buffer as the device’s I/O virtual addresses. As a result, the GPAs are directly 
used by the device to perform DMA [4][12].  

For directly assigned device (including virtual function of SRIOV-enabled device), the 
DMA engine is implemented as hardware circuits and the I/O virtual address (the same as 
GPA in this case) in DMA transaction is automatically translated to host physical memory 
address (abbr. HPA) by the IOMMU based on the I/O page table [1][6][20]. Because all the 
devices share the same I/O virtual address space which is just the guest memory address space, 
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there is only one I/O page table on the host that is shared by guest devices. In essence, the I/O 
page table is nothing but a copy of the shadow page table, and is set up statically when creating 
the virtual machine.  

In Qemu, the device simulator is implemented in the I/O thread which shares the same 
address space with guest VM. And DMA operations are implemented as memory copy 
between the guest memory and the virtual devices. As a result, the I/O thread is able to access 
any location of the guest memory, so does the simulative DMA engine. Before the simulative 
DMA engine performs memory copy, the memory virtualization module translates GPA in 
DMA transaction into host virtual memory address (HVA), which is used by the I/O thread to 
access the guest memory.  

From the framework we find that, for both directly assigned device and simulated device, 
there are no I/O virtual address space isolation in the guest. Furthermore, neither validity 
checking nor access control for DMA transactions are provided on the host side, so that 
malicious or buggy guest device drivers could mange to tamper or corrupt the guest memory 
effortlessly. In summary, the current framework lacks of protections on DMA security. 
Especially for simulated device, to our knowledge, there are no related works on this problem 
currently. 
  

 
Fig. 1. Current framework of DMA support for VMs 

3   Related Works 
[10] presents a simulated Intel IOMMU by software, which has the advantages of complete 
transparency to the guest OS. However, it introduces considerable overhead on DMA 
transactions, especially a lot of context switches between the guest and the host. To improve 
performance, it utilizes extra host physical CPU cores to run the emulation codes of vIOMMU, 
and relaxes the security protections by delaying the retirement of IOTLB entries with different 
strategies. [9] proposes an on-demand DMA mapping strategy for directly assigned PCI 
devices where the guest OS proactively instructs the VMM to map or unmap DMA buffers in 
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a dynamic manner through hypercalls. It needs modifications on device drivers to adopt 
optimizations, such as batching map or unmap requests in a single hypercall to reduce 
overhead. As for performance results, it only evaluates the effect of the map cache inside the 
guest, in the perspective of both cache hit rate and CPU utilization, and no I/O performance 
results are published. [3] discusses the basic considerations on IOMMU support for 
virtualization. The basic design requirements that they emphasized include memory isolation, 
fault isolation and virtualized operating system support. They implement a proof-of-concept 
prototype on Xen while performance evaluations are less presented.  

[14] discusses different IOMMU-based protection strategies in both the security perspective 
and the performance perspective. The single-use mapping strategy provides inter-guest 
protection with the greatest cost. While the shared mapping strategy tries to reuse established 
mappings rather than generating a new one for each I/O transaction. As the extreme of reuse, 
the direct mapping strategy allows maximum reuse of IOMMU mappings and can minimize 
runtime overhead. From the security perspective, the protection level drops as the performance 
improves for each strategy. The mapping strategy adopted by KVM can be categorized as the 
direct one [4][12], which requires pinning the guest’s entire memory on the host, so that 
memory overcommitment is disabled. Furthermore, all the devices inside the guest reside in 
the same address space with the guest memory, and there is no intra-guest DMA isolation or 
protection provided. As in this case, the overhead on DMA mapping/unmaping is minimized, 
so we take it as the performance baseline for comparison with PVIOMMU.  

In addtion, there are related works on performance evaluations and optimizaitons of 
IOMMU. [5] presents peformance characteristics of commodity IOMMUs in Linux, both on 
bare metal and Xen hypervisor. It evalutes the throughput and CPU utilization of disk I/O and 
network I/O workloads with and without IOMMU. [15] discusses the negative impact of 
IOTLB cache misses and propses software and hardware enhancements on IOMMU to reduce 
miss rate. [13] presents scalable IOMMU management design and address two bottlenecks, 
including assignment of I/O virtual addresses (abbr. IOVAs) and management of IOTLB.  

4   System Design and Implementation 

4.1   Overall architecture 
The overall architecture of PVIOMMU is shown in Fig. 2. It is composed of the guest part and 
the host part. In the guest, a standard virtio frontend driver is presented as we called the 
PVIOMMU frontend, which provides an Intel-IOMMU like driver abstraction and general 
driver APIs (e.g. dma_map_ops in Linux) to the DMA Mapping Layer of the guest OS. As a 
result, there is no need to modify guest device driver to use PVIOMMU. Furthermore, the 
PVIOMMU frontend manages an isolated I/O virtual address space for each device, and 
allocates address ranges for DMA transactions dynamically. 
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Fig. 2. Overal architecture of PVIOMMU 
 

On the host side, it consists of I/O page tables, hardware IOMMU for directly assigned 
devices, software IOMMU for simulated devices, and the PVIOMMU backend driver. There 
is a dedicated I/O page table for each guest device. For directly assigned device, the I/O page 
table is referenced by hardware IOMMU providing mappings from devices’ guest I/O virtual 
addresses (abbr. GIOVAs) to HPAs, while that for simulated devices is referenced by software 
IOMMU and provides mappings from GIOVAs to HVAs. The hardware IOMMU is 
commodity one such as Intel-IOMMU. While software IOMMU is implemented in the VMM 
and its design is detailed in subsection 4.2. The hardware and software IOMMUs provide I/O 
address translation and access control on DMA buffers based on I/O page tables. The 
PVIOMMU backend dynamically creates or tears down DMA mappings in I/O page tables. 
Furthermore, the backend manages the dynamic allocation of host page frames for guest DMA 
buffers, which enables thin-provisioning and overcommitment of guest memory. 

The implementation of PVIOMMU is based on the virtio framework. Linux takes the 
virtio_ring as the transport implementation of virtio, which is composed of the descriptor array, 
the available ring and the used ring. The guest chains prepared buffers into the descriptor array, 
and indicates which descriptor chains are ready for use by the VMM in the available ring. 
While the VMM indicates which descriptor chains it has used in the used ring [19]. We adopt 
a single queue for both map and unmap requests. From the guest’s view, a map request is 
composed of two parts: a read-only virtio_dma_mapping structure (as shown in Table 2) and a 
single write-only byte that indicates completion status. Similarly, an unmap request is also 
composed of two parts: a read-only virtio_dma_unmapping structure (as shown in Table 3) 
and a single write-only byte that indicates completion status. We put the two parts into two 
free entries of the descriptor table, and chain them together by the ‘next’ field, as is shown in 
Fig. 3.  
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Table 2.  data structure of map request 
struct virtio_dma_mapping { 

__u64  devid;      // the ID of guest device which this mapping is for 
__u32  type;        // 0 --- MAP 
__u32  len;          // len of the gpas/giovas array 
__u64  direction; // DMA_TO_DEVICE or DMA_FROM_DEVICE 
__u64  giovas[0];  // array of the GIOVAs to map 
__u32  gpas[0];   // array of the GPAs to map, giovas[i]<--> gpas[i] 

}; 

Table 3.  data structure of unmap request 
struct virtio_dma_unmapping{ 

__u64  devid;      // the ID of guest device which this unmapping is for 
__u32  type;        // 1 --- UNMAP 
__u32  len;          // len of the giovas array . 
__u64  giovas[0];  // array of the GIOVAs to unmap  

}; 
 

 
Fig. 3. Organization of PVIOMMU request queue 

 
The PVIOMMU frontend calls virtqueue_add [12][19] function of Linux kernel to add 

request to the descriptor array, and kicks (virtqueue_kick [12][19] function of Linux kernel) 
the PVIOMMU backend. The virtqueue_kick function will merge multiple requests and notify 
the backend with only one hypercall, which reduces the overhead of context switching 
between the guest and the host. Then, the frontend calls virtqueue_get_buf [12][19] function 
iteratively to poll completed requests from the backend. When waiting for the completion, it 
utilizes the cpu_relax [12] function to do a lightweight polling which can also reduce power 
consumption. On the host side, a kernel thread named vhost-pviommu is created for each guest 
which services the guest’s requests. Upon notification from the guest, the kernel thread 
unmarshals the request and checks the type field to identify which kind of request it is. ‘0’ 
means map request while ‘1’ means unmap request. After handling the request, the kernel 
thread writes completion status into the write-only byte, ‘0’ means success while non-zero 
value means some fault and gives the fault number.  

In summary, compared with the full-virtualization solution in [10], efficiency of 
interactions between the guest and the host is significantly improved because a lot of context 
switches are avoided. Moreover, in that case it has to traverse the guest I/O page table to get 



5382                                                                Hongwei Tang et al.: IOMMU Para-Virtualization for Security and Performance 

the GIOVAs and GPAs by recursively walking through the shadow page table [11], while in 
PVIOMMU, they are directly passed to the backend through the virtio queue. 
 

4.2 DMA access control for simulated devices 
 
In Qemu’s device model, device simulation is implemented by the dedicated I/O thread which 
runs in the same address space of guest virtual machine from the host’s view [25]. Therefore, 
the I/O thread can access any byte in the guest memory, and so does the simulative DMA 
engine. To enforce access control for DMA security, we revise the device model by separating 
the address space of the device simulator from that of guest virtual machine. In this model, the 
device simulator runs in a dedicated I/O process, and is dynamically granted access 
permissions on guest DMA buffers. The mechanism behind DMA access control for simulated 
devices is shown in Fig. 4. As also a simulated device, the software IOMMU is implemented 
in the I/O process, exposing API to translate GIOVAs to HVAs for the simulative DMA 
engine. The I/O page table for simulated device is placed in user space of the I/O process, 
where the software IOMMU and the PVIOMMU backend can both access with pointers 
directly.  

 Create DMA mappings 

Given <GIOVA, GPA> pairs by the frontend, the backend firstly traverses the shadow page 
table (EPT on Intel systems) to translate the GPAs to HPAs. If any host page frame is not 
present, it will try to allocate one and fill the shadow page table. Then, the backend locates a 
free virtual memory area (VMA) in the virtual address space of the I/O process, and maps the 
host page frames corresponding to the HPAs into the VMA with proper access permissions, 
for example, read permission indicates DMA_TO_DEVICE and write permission indicates 
DMA_FROM_DEVICE. Finally, the backend creates mappings from GIOVAs to HVAs in 
the I/O page table and specifies the legitimate directions accordingly.  

 Address translation 

Before accessing guest DMA buffers, the simulative DMA engine calls the software 
IOMMU to do address translation. The software IOMMU walks through the I/O page table to 
locate HVAs with GIOVAs as the indexes. Moreover, it also checks whether the DMA 
transaction is allowable against the DMA directions recorded in the I/O page table entries. 
Because address translation is on the critical path of DMA transaction, placing I/O page tables 
in user space can avoid the overhead of user-kernel context switching.  

 Tear down DMA mappings 

First, the backend removes the mappings for specific GIOVAs in the I/O page table. Then it 
unmaps the corresponding VMA of the I/O process from the host page frames. In this way, the 
access permissions on the guest DMA buffer are revoked from the I/O process. 
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Fig. 4. Mechanism of DMA access control for simulated devices 
 

4.3 Workflow of PVIOMMU 
The workflow of creating DMA mappings with PVIOMMU is shown in Fig. 5:  

Step 1: The device driver prepares memory buffer for this DMA transaction.  
Step 2: The frontend allocates address ranges for the DMA buffer from the device’s I/O 

address space.  
Step 3: The mapping request is added to the available ring of the virtqueue. And if this is no 

pending requests, the virtio transportation will notify the backend to process by issuing a 
hypercall.  

Step 4: The backend consumes request from the available ring.  
Step 5: The backend locates the host page frames for the guest DMA buffer by walking 

through the shadow page table. If any page frame has not been allocated yet, it will try to 
allocate one.  

Step 6: If the DMA is for simulated device, the backend will grant access permission on the 
guest DMA buffer to the device simulator by mapping the host page frames into the address 
space of the I/O process.  

Step 7: The backend creates DMA mappings in the I/O page table for the device.  
Step 8: The backend writes the completion status into the status byte, and adds the response 

to the used ring.  
Step 9: The frontend gets the completion status from the used ring, and returns to the device 

driver.  
Step 10: The DMA mapping process is finished, and the device driver proceeds with the 

DMA transaction. 
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Fig. 5. Workflow of PVIOMMU on creating DMA mappings. 

Compared with the workflow of DMA mapping in guest serviced by native KVM, Step 2 to 
9 are added by PVIOMMU. From these steps, Step 3 which might introduce guest-host 
context switches, and Step 5 that walks through the shadow page table and may try to allocate 
page frames, are more costly operations. Motivated by this observation, we propose 
optimization methods to reduce the overhead in subsection 4.4 and 4.5. 

4.4   Migration of PVIOMMU 
Dynamic resource scheduling on virtualization platform relies mainly on two parts, the 
mechanism part which contains virtualization of hardware devices and live migration of 
virtual machine, and the policy part such as resource schedulers and scheduling algorithms.  
Essentially, PVIOMMU is a new virtual hardware device of virtual machine, so live migration 
of the virtual device is an essential function to support dynamic resource scheduling. 

The states of PVIOMMU that should be migrated mainly include the general virtio states 
and established DMA mappings. The general virtio states such as virtqueues are migrated 
using the interfaces provides by Qemu/KVM [12]. Currently, directly assigned devices do not 
support live migration because internal information of such devices cannot be migrated. 
Accordingly, we focus on the migration of established DMA mappings for simulated devices. 
Because HVA in I/O page table is local address in I/O process’ address space, it will be invalid 
on the destination host. To migrate DMA mappings, an intermediary mapping structure in 
guest view is generated from the host I/O page table on the source host. The intermediary 
mapping structure is shown in Table 4. Each such structure describes a VMA for guest DMA 
mappings in the I/O process. After the intermediary mapping structures are copied to the 
destination host, DMA mappings are reconstructed in the I/O process’ address space and a 
new I/O page table is generated. After the guest resumes, the fake DMA engine continues 
operation with new mappings specified in I/O page table.  
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Table 4. defination of the intermediary mapping structure 
struct dma_mapping_guestview { 

__u64  devid;      // the ID of guest device which this mapping is for 
__u32  len;          // len of the gpas array 
__u32  direction; // DMA_TO_DEVICE or DMA_FROM_DEVICE 
__u64  giova_start, giova_end;  // start and end of the guest I/O virtual address space 
__u64  gpas[0];   // array of the GPAs to map 

}; 
 

4.5   Guest-side optimization 
We have traced the DMA mapping creation operations in the driver of Intel I210 Ethernet NIC 
inside the virtual machine when performing basic network micro-benchmarking by Netperf 
[16]. Table 5 shows the statistics collected during the test. 

Table 5.  Summary of DMA mapping creation traces 
Test Case Test 

Duration 
(seconds) 

DMA Mapping 
Create OPS.  # 

Count of 
Involved Pages 
(4KB-size) # 

Reuse Rate 
Of each page # 

TCP_STREAM 10 82864 95 872 
TCP_RR 10 59535 80 744 
UDP_STREAM 10 14 12 1 
UDP_RR 10 63367 11 5761 

 
Considering the reverse process, each create operation is paired with a remove operation, so 

the count of DMA mapping manipulations doubles. As described in the workflow in 
subsection 4.3, these operations are expensive and may affect I/O performance. From the table 
we also find that, the page frames for DMA buffers are heavily reused. This observation 
motivates us to adopt guest-side optimization to reduce overhead.  

The basic idea of the optimization is to delay the actual removal of DMA mappings in the 
host I/O page table and give chances to subsequent DMA transactions to reuse them. The 
frontend preserves a dedicated cache for each device to store reusable DMA mappings. A 
reusable mapping is the one that the device driver has released but the frontend has not 
removed from the host I/O page table. When creating a DMA mapping, the frontend first 
searches in the cache for reusable mappings with the GPAs of the DMA buffer. If a reusable 
mapping is found, the corresponding GIOVA will be reassigned to the DMA buffer and the 
process of creating mapping on the host for it is omitted. Since I/O page table on host is 
indexed by I/O virtual address [12], we name the cache as Reverse Translation Cache (abbr. 
RTC).  

The structure for the RTC is shown in Fig. 6. For search efficiency and space cost, the RTC 
is organized as a combination of an adaptive radix-tree (abbr. ART) [31] and a FIFO queue. 
ART is a variation data structure to solve the problem of excessive worst-case space 
consumption of radix tree by adaptively designing compact and efficient data structures for 
nodes. To store DMA mappings in the ART, GPA is used as the key with the span of 8 (for 
byte alignment), and GIOVA is used as the value. In our case, 6 types of inner nodes and 6 
types of leaf nodes are adopt, which are described as in Table 6. Leaf nodes are extensions 
based on corresponding inner nodes with the addition of a REUSING bit for each DMA 
mapping. When the REUSING bit is set (1), it means that the cached mapping is currently 
being reused. Moreover, GIOVA (64 bits long) is stored in the child pointer array of leaf node.  



5386                                                                Hongwei Tang et al.: IOMMU Para-Virtualization for Security and Performance 

A DMA mapping should be invalidated after it has been cached in the RTC for a limited 
time to reduce security risks. For this purpose, firstly a timer is employed to split time into 
cycles of fixed time duration (T). Secondly, to effectively track expiration time for each 
mapping with low overhead, the coarser-grain cycle is used as the basic time unit. Finally, the 
cycle when a mapping is added into the RTC is recorded, and after fixed number (C) of cycles 
it will be invalidated. In this manner, mappings added at the same cycle are invalidated 
together, that further reduces the overhead on interacting with the PVIOMMU backend. As 
shown in Fig. 6, a FIFO queue is used for assisting to implement mapping invalidation 
periodically. Element of the FIFO queue is composed of a pointer to leaf node and a GPA, 
which represents a cached mapping. A special separator element is added to the FIFO queue at 
each timeout of the timer. By this means, mappings added at different cycles are separated in 
the FIFO queue. At any time, only the unexpired mappings which are added at the latest C 
cycles are stored in the FIFO queue. Suppose the oldest mappings in the FIFO queue are added 
at cycle numbered as N, they are also at the head of the FIFO queue. When the timer timeouts, 
a new cycle numbered as N+C starts, and mappings added in cycle N are removed from the 
FIFO queue and the ART. And then, the frontend issues a single request to the backend to 
delete the mappings in batch mode. It’s worth mentioning that, mapping that is currently being 
reused (with the corresponding REUSING bit set in leaf node) should only be removed from 
the FIFO queue and be kept in the ART, because when it is released it will be added into the 
RTC again. The extra 1-bit REUSING flag can reduce the cost of insertion and deletion for 
reused mappings. In our implementation, T is set to 10 seconds and C is set to 3, so a mapping 
might be cached in the RTC for [30, 40) seconds.   

 

 
Fig. 6. Structure of the Reverse Translation Cache. 

Table 6.  Types of nodes (inner and leaf) 
Node 
Type 

Lengt
h of  
Key 
Arra
y 

Lengt
h of  
Point
er 
Arra
y 

# of 
Keys/ 
Pointe
rs 

Storage 
Organization 

Search 
Method 
 for Keys 

Comparisons 
on key bytes 
for 
BinarySearch 

Comparisons 
on key bytes 
for 
InsertSort 

Node2 2 2 1~2 Sorted keys are 
stored in the key 
array, and 
corresponding 

Binary 
search 

<= 2 <=1 
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child pointers are 
stored in the same 
position of the 
pointer array. 

Node4 4 4 3~4 The same as above Binary 
search 

<= 3 <=3 

Node16 16 16 5~16 The same as above Binary 
search 

<= 5 <=15 

Node32 32 32 17~32 The same as above Binary 
search 

<= 6 <=31 

Node64 256 64 33~64 The key array is 
indexed with key 
bytes directly and 
stores indexes into 
the pointer array 
for corresponding 
key. 

Indexing 
with key 
bytes 

0 0 

Node25
6 

256 256 65~25
6 

The pointer array 
is indexed with 
key bytes directly 
and no key array is 
provided.  

Indexing 
with key 
bytes 

0 0 

 

 insert a DMA mapping into the RTC 

The pseudo-code of the insert algorithm is shown in Fig. 7 a) and b). It starts from the root 
of the ART, recursively searches with key bytes of the given GPA, creates inner nodes and leaf 
node on the path if they have not yet existed, and finally stores the GIOVA in the 
corresponding position of the child pointer array in the leaf node. If the mapping is already in 
the ART, it is simply marked as being reused with the REUSING bit set. Binary search 
algorithm (BinarySearch) is used to search a specific key byte in nodes with less than or 
equal to 32 keys. While for nodes of type Node64 or Node256, the key byte is directly used as 
the index into the key array or the child pointer array respectively, so that no key comparisons 
are needed. If a key byte does not exist, it will be added into the corresponding node in sorted 
order (InsertSort). If a node is already full before the addition of the key byte, the node 
will be expanded to the next bigger node type (Grow). Finally, the pointer to the leaf node and 
the GPA are appended to the tail of the FIFO queue. 

Algorithm1a): insert a DMA mapping into the ART 
01: InsertART(GPA, GIOVA, root) 
02:     return Insert(GPA, GIOVA, 63, root) 

Fig. 7 a) pseudo-code for inserting a DMA mapping into the ART 
 
Algorithm1b): insert a key byte into a node 
01: Insert(GPA, GIOVA, bit, node) 
02: if bit == 63 
03:     key = GPA[bit, bit-3] 
04:     bit = bit - 4 
05: else 
06:     key = GPA[bit, bit - 7] 
07:     bit = bit - 8 
08: if node.type is Node2, Node4, Node16 or Node32 
09:     if (index = BinarySearch(key, node.keys, node.length)) < node.length 
10:         if(bit <= 4) 
11:             /*the key is aready exist in the leaf node indexed by index 
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12:              *Set the reusing bit of the mapping*/ 
13:             Set_bit(node.reusing, index) 
14:             return ALREAD_EXIST   
15:         else 
16:             return Insert(GPA, GIOVA, bit, node.childpointers[index]) 
17:     else  
18:        /*the key is not exist in the array, insert it*/ 
19:         if node.length is less than 2, 4, 16 or 32 respectively 
20:             index = InsertSort(key, node.keys, node.length) 
21:             if bit <= 4 
22:                 node.childpointers[index] = GIOVA 
23:                 Clear_bit(node.reusing, index)             
24:                 return SUCCESS 
25:             else /*allocate a new smallest node*/ 
26:                 node.childpointers[index] = new Node2() 
27:                     return Insert(GPA, GIOVA, bit, node.childpointers[index]) 
28:         else 
29:            /*the node array is full, we should grow the node to a bigger one*/ 
30:             node = Grow(node) 
31:             if node.type is Node4, Node16, Node32 
32:                 index = InsertSort(key, node.keys, node.length) 
33:                 if bit <= 4 
34:                     node.childpointers[index] = GIOVA 
35:                     Clear_bit(node.reusing, index) 
36:                     return SUCCESS 
37:                 else 
38:                     node.childpointers[index] = new Node2() 
39:                                    return Insert(GPA, GIOVA, bit, node.childpointers[index]) 
40:             else   /*node type is Node64 after growing*/ 
41:                 index = node.keys[key] 
42:                 if bit <= 4 
43:                     node.childpointers[index] = GIOVA 
44:                     Clear_bit(node.reusing, index) 
45:                     return SUCCESS 
46:                 else 
47:                     node.childpointers[index] = new Node2() 
48:                                    return Insert(GPA, GIOVA, bit, node.childpointers[index]) 
49: else if node.type is Node64 
50:     if  (index = node.keys[key]) < node.length 
51:         if bit <= 4 
52:             Set_bit(node.reusing, key) 
53:             return ALREAD_EXIST 
54:         else 
55:             return Insert(GPA, GIOVA, bit, node.childpointers[index]) 
56:     else if node.length < 64 
57:         node.keys[key] = index = node.length +1 
58:         if bit <= 4 
59:             node.childpointers[index] = GIOVA 
60:             Clear_bit(node.reusing, index) 
61:             return SUCCESS 
62:         else 
63:             node.childpointers[index] = new Node2() 
64:             return Insert(GPA, GIOVA, bit, node.childpointers[index]) 
65:     else 
66:         node = Grow(node)  /*node.type is Node256 after growing*/ 
67:         if bit <= 4 
68:             node.childpointers[key] = GIOVA 
69:             Clear_bit(node.reusing, key) 
70:             return SUCCESS 
71:         else 
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72:             node.childpointers[key] = new Node2() 
73:             return Insert(GPA, GIOVA, bit, node.childpointers[key]) 
74: else /*node.type is Node256*/ 
75:     if node.childpointers[key] != NULL 
76:         if bit <= 4 
77:             Set_bit(node.reusing, key) 
78:             return ALREAD_EXIST 
79:         else 
80:             return Insert(GPA, GIOVA, bit, node.childpointers[key]) 
81:     else    
82:         if bit <= 4 
83:             node.childpointers[key] = GIOVA 
84:             Clear_bit(node.reusing, key) 
85:             return SUCCESS 
86:         else 
87:             node.childpointers[key] = new Node2() 
88:             return Insert(GPA, GIOVA, bit, node.childpointers[key])       

Fig. 7 b) pseudo-code for recursively inserting a key byte into a node 
 

 Search a DMA mapping in the RTC 

The pseudo-code of the search algorithm is shown in Fig. 8 a) and b). It recursively 
searches from the root down to leaf node. The same as node insert, for nodes of type Node2, 
Node4, Node16 or Node32, binary search algorithm is adopted to search the given key byte in 
the node. While for nodes of type Node64, the key byte is used as the index into the key array, 
and the value specifies the index into the child pointer array. For nodes of type Node256, the 
key byte is the index into the child pointer array.  

Algorithm2a): search in the ART for reusable DMA mapping with given GPA 
01: SearchART(GPA, root) 
02:     return Search(GPA, 63, root) 

Fig. 8 a) pseudo-code for searching the ART 
 
Algorithm2a): search in a node for the given key byte 
01: Search(GPA, bit, node)  
02: if bit < 12 
03:     return node 
04: if node == NULL 
05:     return NULL 
06: if bit == 63 
07:     key = GPA[bit:bit-3] 
08:     bit = bit -4 
09: else 
10:     key = GPA[bit:bit-7] 
11:     bit = bit-8 
12: if node is.type is Node2, Node4, Node16 or Node32 
13:     if (index = BinarySearch(key, node.keys, node.length)) < node.length 
14:         return Search(GPA, bit, node.childpointers[index]) 
15:     else  
16:         return NULL 
17: else if node.type is Node64 
18:     if(index = node.keys[key]) <= node.length 
19:         return Search(GPA, bit, node.childpointers[index]) 
20:     else 
21:         return NULL 
22: else 
23:     return Search(GPA, bit, node.childpointers[key]) 

Fig. 8 b) pseudo-code for recursively searching key byte in node 
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 Delete a DMA mapping from the RTC 

The pseudo-code of the delete algorithm is shown in Fig. 9. It is the reverse process of insert. 
It deletes the values indexed by the key byte from the key array and the child pointer array of 
the node, and shrinks the node if the number of the left elements is less than the lower limit for 
the node type (Shrink). If the node is of type Node2 and the only element is deleted, the node 
will be removed and its parent node will be updated accordingly. In addition, the 
corresponding element in the FIFO queue is also removed. 

Algorithm3: delete a DMA mapping from the ART 
01: Delete(node, GPA, bit) 
02: if bit >= 64 
03:     return SUCCESS 
04: if node == NULL 
05:     return SUCCESS 
06: if bit == 60 
07:     key = GPA[bit+3:bit] 
08: else 
09:     key = GPA[bit+7:bit] 
10: if node.type is Node2, Node4, Node16 or Node32 
11:     index = BinarySearch(key, node.keys, node.length) 
12:     if index >= node.length 
13:         return  NOT_EXIST 
14:     /*move the elements from index to the tail one position forward*/ 
15:     Move1(node.keys, index) 
16:     Move1(node.childpointers, index)   
17:     parent = node.parent 
18:     if node.length is 0, 2, 4, 16 for the types respectively 
19:         Shrink(node) /*Node2->NULL,Node4->Node2,Node16->Node4,… */ 
20:         if node == NULL 
21:             /*if the node is deleted, we should delete  
22:              *the corresponding key byte in parent node */ 
23:             return Delete(parent, GPA, bit+8) 
24: else if node.type is Node64 
25:     if node.keys[key] >= node.length 
26:         return NOT_EXIST 
27:     node.length = node.length – 1 
28:     if node.length == 32 
29:         Shrink(node) /*Node64->Node32*/ 
30:     else 
31:         node.childpointers[node.keys[key]] = NULL 
32:         node.keys[key] = node.length 
33: else /*node.type if Node256*/ 
34:     if node.childpointers[key] == NULL 
35:         return NOT_EXIST 
36:     node.length = node.length – 1 
37:     if node.length == 64 
38:         Shrink(node) /*Node256->Node64*/ 
39:     else 
40:         node.childpointers[key] = NULL 

Fig. 9. pseudo-code for deleting a DMA mapping from the ART 
 

The most time-consuming operation for search/insert/delete is comparison on key byte. The 
analysis on time complexity is presented in Table 7. As is depicted in the table, the time 
complexity has no relationship with the number of DMA mappings cached in the RTC. Instead, 
it is related to the height of the ART which depends on the width of GPA. The theoretical 
maximum length of GPA is 64 bits, and currently the addressing capability of mainstream 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 12, December 2016                            5391 

CPUs is no more than 48 bits. Moreover, DMA mapping is in page (4096 bytes) granularity, so 
the lowest 12 bits of GPA is of no use for identifying a mapping. For scalability, suppose the 
size of GPA is 64 bits, the valid key length is 52 bits and the height of the ART is 7. As is 
shown in Table 7, the best-case and worst-case time consumptions are all constant.  

Table 7.  Time complexity analysis 
Operation Best Case Best-Case 

Time 
Complexity 

Worst Case Worst-case 
Time 
Complexity 

SearchART All the nodes on the 
searching path are with 
type of Node64 or 
Node256 

No 
comparisons 
on key bytes 

All the nodes on 
the searching 
path are with 
type of Node32 

42 comparisons 
on key bytes. 

InsertART All the nodes on the 
searching path are with 
type of Node64 or 
Node256 

No 
comparisons 
on key bytes 

All the nodes on 
the searching 
path are with 
type of Node32 
and all the nodes 
donot exist on 
the path.  

42 
(BinarySearch) 
+ 217 
(InsertSort) = 
259 
comparisons on 
key bytes. 

Delete All the nodes are with 
type of Node64 or 
Node256. 

No 
comparisons 
on key bytes 

The leaf node is 
of type Node32. 

6 comparisons 
on the lowest 
key byte. 

 
The space consumption of each type of node varies. For each inner or leaf node, there 

should be a 13-bytes extra space to store the type of the node (node.type, 1 byte), the number 
of valid keys/pointers in the node (node.length, 2 bytes), the pointer to the parent node 
(node.parent, 8 bytes). Especially for leaf nodes, extra space for REUSING bits is needed. For 
example, leaf nodes of type Node2 or Node4 need a single byte, while that of type Node16 
needs 2 bytes, and so forth. The analysis on space complexity is presented in Table 8. The best 
space utilization can be achieved in that all the inner and leaf nodes are of type Node256 and 
there are no NULL pointers on each node. In this case, the average space consumption for each 
key byte is 8.1 bytes on inner nodes and 8.2 bytes on leaf nodes respectively. To optimize the 
space consumption, the PVIOMMU frontend tries to allocate adjacent guest pages for DMA 
buffers, so that more Node256 nodes are used. 

Table 8.  Space consumption of each types of nodes 
Node 
Type 

Total Size of  
Inner Node 
(Bytes) 

Total Size of  
Leaf Node (Bytes) 

Minimu
m 
Number 
of Keys 

Maximu
m 
Number 
of Keys 

Average Space 
Consumption 
with the Least 
Keys 
(Inner/Leaf) 

Average Space 
Consumption with 
the Most Keys 
(Inner/Leaf) 

Node2 2*1+2*8+13 =31 2*1+2*8+13+1=3
2 

1 2 31/32 15.5/16 

Node4 4*1+4*8+13=49 4*1+4*8+13+1=5
0 

3 4 16.3/16.7 12.3/12.5 

Node16 16*1+16*8+13=
157 

16*1+16*8+13+2
=159 

5 16 31.4/31.8 9.8/9.9 

Node32 32*1+32*8+13=
301 

32*1+32*8+13+4
=305 

17 32 17.7/17.9 9.4/9.5 

Node64 256*1+64*8+13
=781 

256*1+64*8+13+
8=789 

33 64 23.7/23.9 12.2/12.3 

Node256 256*8+13=2061 256*8+13+32=20
93 

65 256 31.7/32.2 8.1/8.2 



5392                                                                Hongwei Tang et al.: IOMMU Para-Virtualization for Security and Performance 

 
Finally, the lifecycle of DMA mapping with RTC in guest is described as follows. 
Step 1: To create a DMA mapping in guest, the frontend first searches the RTC to find 

reusable mapping entries. For GPAs found in the RTC, the corresponding mappings are reused 
and marked as REUSING. While for GPAs that are not in the RTC, the frontend allocates new 
GIOVAs and creates new mappings in the host I/O page table by issuing a map request to the 
backend. Upon the backend completes the request, the corresponding mappings in the host I/O 
page table are available. 

Step 2: The device driver performs DMA on the mappings. 
Step 3: When a DMA mapping is released by the device driver, it is added into the RTC.  
Step 4: When the timer timeouts, expired mappings are removed from the RTC. And then, 

the frontend issues a single request to the backend to remove the mappings from the host I/O 
page table in batch mode.   

Step 5: If a mapping is reused before invalidated, it will be marked as REUSING, so that it 
will not be removed from the ART until it is released.   

4.6   Host-side Optimization (HOPT) 
On the critical path for creating a DMA mapping, the backend mainly completes two 
operations: walking through the shadow page table to translate GPAs into HPAs, and trying to 
allocate page frames if not present. Based on the above observation, we adopt the following 
two measures to further reduce the overhead. 

 Pre-allocated page pool 

For each guest, the backend preserves a page pool to accelerate the process of dynamic page 
allocation. In our implementation, the size of the page pool is 1M bytes. As is shown in Fig. 10, 
a ring with 256 pointers to the pages in the pool is used for fast allocation of pages. In this case, 
pages are allocated in a sequential manner from the head of available pages pointers until to 
the tail.  

 
Fig. 10. Ring of pointers to pages in the pool 

When host page frames for the given GPAs are not present, the backend firstly tries to fetch 
pages from the page pool. If there are not enough pages, it will resort to the host memory 
allocator. Moreover, the backend monitors the usage of the page pool. If the amount of 
available pages drops below the predefined threshold, in our implementation 64 pages, it 
requests new pages from the host memory allocator and appends the pointers at the tail of the 
ring. The space consumption of this optimization is 1026K bytes (1Mbytes + 256*8bytes), and 
the time of page allocation from the pool is negligible.  
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 Cache of the pointer to the last referenced page table 

To create DMA mappings, the backend translates GPAs to HPAs by walking through the 
shadow page table repeatedly. This takes hundreds to thousands of clock cycles to complete 
the operation. Based on the locality principle, we adopt a cache for the GPA prefix and the 
pointer to the last level (for example, the fourth level on 64-bit Linux) shadow page table that 
is referenced most recently, to reduce the overhead on shadow page table walking. To translate 
GPA to HPA, the backend first compares bits 20~63 of the GPA with the GPA prefix. If they 
match, it locates the entry with bits 12~19 of GPA as the index into the shadow page table 
referenced by the pointer. If the entry is already present, it just returns the corresponding HPA. 
Otherwise, it allocates a page from the page pool and fills the entry. If not match, it will walk 
through the shadow page table as usual, and finally updates the cache with the new GPA prefix 
and pointer. The space consumption of this optimization is 8 bytes for the pointer cache, and 
the time complexity is O(1) because one comparison is required for translating each GPA.  

5   Experimental Evaluations 

5.1   Methodology 
 Experimental Setup  

We use KVM hypervisor and CentOS 7.1.1503 running Linux 3.10.0 for both host and 
guest. Our experimental setup is comprised of two Sugon I620-G20 servers, which are 
dual-socket, 10-cores per socket server equipped with Intel Xeon E5-2650 V3 CPUs running 
at 2.3GHz. The server (host) includes 32GB of memory, an Intel I210 1Gb NIC and a 
Mellanox IB ConnectX-3 40Gb HCA card.  The virtual machines are configured with 4 
VCPUs and 8GB memory. 

 Benchmarks  

For Ethernet, we use Netperf to evaluate network throughput and latency. In addition, we 
use Apache Bench [17] to evaluate the web service performance. For IB, we use the built-in 
tools and IMB 4.1 [18] to measure communication performance.  

 Testbed system configurations 

We take the network I/O performance of virtual machines serviced by native KVM as the 
baseline. As introduced in Section 2 and Section 3, the native KVM implementation on 
IOMMU support for virtual machines adopts the direct mapping strategy with lowest overhead 
and optimal performance, but no DMA security guarantees. Our goal is to provide a 
performance as close as possible to the baseline on the premise that DMA security is 
guaranteed. So we evaluate four system configurations, including PVIOMMU with no 
optimization (abbreviated as PVIOMMU), PVIOMMU with reverse translation cache 
(abbreviated as PVIOMMU+RTC), PVIOMMU with RTC and host-side optimizations 
(abbreviated as PVIOMMU+RTC+HOPT), and the baseline in the native KVM (abbreviated 
as BASELINE). 

5.2   Benchmark results 
For Ethernet, performance is measured on Intel I210 NIC which is directly assigned to the 
guest, and simulated E1000 Ethernet NIC. While for IB, a virtual function of HCA card [24] is 
assigned to the guest. 
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5.2.1 Ethernet-Intel I210 

The results of Netperf-TCP_STREAM test on Intel I210 are shown in Fig. 11. There is no 
significant difference among the four configurations at the aspect of throughput. Compared 
with the BASELINE, para-virtualization of IOMMU increases CPU utilization by about 9%.  
With optimizations of RTC and HOPT, CPU cycles consumed by PVIOMMU are reduced 
obviously, and the CPU utilization drops close to that of the BASELINE.  
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Fig. 11. TCP Throughput and CPU utilization of I210. 

Fig. 12 a) presents the performance of exchanging requests and responses between the 
Netperf client and server, with packet size of 1 byte. The y-axis on the left side means amount 
of transactions per second, the more the better. While the y-axis on the right side means 
one-way communication latency, the shorter the better. As can be seen from the figure, 
compared with the BASELINE, the latencies increased by 21usec for TCP and 13usec for 
UDP when PVIOMMU is adopted, and the optimization techniques (RTC+HOPT) can further 
shorten the latency gaps to 13usec and 4usec for TCP and UDP respectively. Furthermore, 
RTC improves the latency dramatically, while HOPT has little promotion. Fig. 12 b) gives the 
very same data but normalized against the BASELINE. Moreover, comparisons on CPU 
utilization under the four configurations are presented as well. As can be seen from the curves 
(CPU_UTIL_TCP_RR and CPU_UTIL_UDP_RR), PVIOMMU incurs extra CPU utilization, 
and the optimization methods help to reduce CPU consumption.  
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Fig. 12 a) TCP/UDP request-response rate and one-way latency.  b) Transfer rates normalized to the 
BASELINE and CPU utilizations. 
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In the Apache Bench (ab) test, it simulates a simple web browsing scenario that the client 
requests a static page from the server. Fig. 13 a) and b) present the results of ab test with 100 
concurrent connections. Fig. 13 a) shows different absolute request rates that can be achieved 
with 10,000 and 100,000 total requests. As can be seen from the figure, RTC is the most 
significant optimization for this metric. By normalized against the BASELINE, we can see 
from Fig. 8 b) that, by optimizing on PVIOMMU, the request rate can achieve 96% of the 
BASELINE.  
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     Fig. 13 a) Apache Bench test.          b) The results normalized to the BASELINE. 

5.2.2 Ethernet- Simulated E1000 

Fig. 14 presents the TCP throughput and CPU utilization of simulated E1000 NIC. As seen 
from the figure, RTC optimization can boost the bandwidth to very close to the BASELINE. 
As the NIC is simulated by software, more CPU cycles are consumed when transferring 
packets compared with the directly assigned NIC. Although PVIOMMU increases CPU 
utilization, RTC and HOPT optimizations reduce that to an even lower level than the 
BASELINE. That is because that, under the BASELINE case the driver for E1000 in the guest 
utilizes bounce buffers to move data between DMA buffers and user-provided buffers which 
causes CPU utilization increasing. 
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Fig. 14 TCP Throughput and CPU utilization of simulated E1000 
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Fig. 15 a) and b) show the results of TCP_RR and UDP_RR tests on simulated E1000. By 

adopting PVIOMMU without optimization, the TCP request-response performance can 
achieve about 91% of the BASELINE, while it only achieves about 75% on Intel I210 (shown 
in Fig. 12 b)). The reason is that hardware DMA engine is more efficient than simulated DMA 
engine, so the overhead of IOMMU virtualization is more significant in the former case. 
Furthermore, as seen from the curves (CPU_UTIL_TCP_RR and CPU_UTIL_UDP_RR) in 
Fig. 15 b), the CPU consumption of PVIOMMU is reduced to no more than 4% by adopting 
RTC and HOPT optimizations. Overall, the CPU consumption of PVIOMMU is moderate. 
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Fig. 15 a) TCP/UDP request-response and one-way latency.  b) Transfer rates normalized to the 

BASELINE. 

 

Fig. 16 a) and b) shows the ab test results on simulated E1000. The results reveal that it can 
get better performance with PVIOMMU compared to the native KVM implementation. In the 
latter case, the guest device driver uses software IOTLB to setup static DMA mappings and 
employs bounce buffer for legacy devices. The E1000 device driver uses a lot of bounce 
buffers to complete DMA transaction that introduces a large amount of extra memory copies 
and significant overhead. As a result, we can claim that PVIOMMU can improve performance 
for devices using bounce buffer.  
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Fig. 16 a) ab request rates on simulated E1000.    b) ab request rates normalized against the BASELINE. 
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5.2.3 IB 

We use the IB verbs-level test programs (ib_write_bw, ib_write_lat, ib_send_bw and 
ib_send_lat) provided with OFED to benchmark the performance of IB. ib_write_bw and 
ib_write_lat measure the bandwidth and latency respectively using RDMA write transactions, 
while ib_send_bw and ib_send_lat using send transactions [32]. As Fig. 17 a) shows, among 
the four configurations, the disparity on bandwidth measured by ib_write_bw (17MB/s) is 
more obvious than that by ib_send_bw (6MB/s). The reason is that RDMA transaction needs 
more dynamic DMA mappings to access user-provided buffers, while send transaction uses 
pre-registered buffers with fixed DMA mappings. After optimization, the gap is narrowed 
down to about 5Mb/s. While the differences on latencies are very small among the four 
configurations as is shown in Fig. 17 b).  
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Fig. 17 a) IB bandwidth.                                 b) IB latency. 

The IMB PingPong test results are shown in Fig. 18 a) and b). The four curves almost 
overlap, which indicates that the overhead of IOMMU virtualization is negligible on MPI 
communications.  
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Fig. 18 a) latency results of IMB PingPong test.      b) bandwidth results of IMB PingPong test. 

6   Conclusion and Future Work 
In this paper, we present PVIOMMU, an IOMMU para-virtualization solution to support high 
efficiency and secure DMA in virtual machines. A prototype is implemented in Qemu/KVM 
based on the virtio framework. Specially, to provide access control on DMA transactions of 
simulated devices, we revised Qemu’s device model to separate the device emulator from the 



5398                                                                Hongwei Tang et al.: IOMMU Para-Virtualization for Security and Performance 

address space of the guest virtual machine. In addition, we adopt optimizations on PVIOMMU 
to further reduce virtualization overhead. On the guest side, the reverse translation cache for 
DMA mappings is employed to allow reusing. While on the host side, the pre-allocated page 
pool is adopted to accelerate page frame allocation for guest DMA buffers. Moreover, time for 
walking through the shadow page table is shortened by caching the pointer to the last 
referenced last-level shadow page table. Network performance evaluations on Intel I210 NIC, 
simulated E1000 NIC and IB ConnectX-3 card show that, PVIOMMU introduces little 
overhead on DMA transactions compared to the native KVM implementation, which lacks of 
protections on DMA security.  

GPU is another kind of device that heavily relies on DMA operations. Our future work will 
extend the performance evaluation to GPU virtualization, for both simulated and 
hardware-assisted vGPU. And then, we will take performance tunings and optimizations based 
on the benchmarking results. In addition, we will dive deeper into resource scheduling on 
virtual machine with PVIOMMU, evaluate the influence of IOMMU para-virtualization on 
scheduling decisions, and study algorithms that can avoid instabilities on virtual machine 
migration.   
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