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Abstract 
 

It is essential to satisfy class-specific QoS constraints to provide broadband services for new 
generation networks. The present study proposes a QoS-driven multicast scheme for wireless 
networks in which the transmission rate and end-to-end delay are assumed to be bounded 
during a multiple multicast session. A distributed algorithm was used to identify a cost-
efficient sub-graph between the source and destination which can satisfy QoS constraints of 
a multicast session. The model was then modified as to be applied for wireless networks in 
which satisfying interference constraints is the main challenge. A discrete power control 
scheme was also applied for the QoS-aware multicast model to accommodate the effect of 
transmission power level based on link capacity requirements. We also proposed random 
power allocation (RPA) and gradient power allocation (GPA) algorithms to efficient 
resource distribution each of which has different time complexity and optimality levels. 
Experimental results confirm that the proposed power allocation techniques decrease the 
number of unavailable links between intermediate nodes in the sub-graph and considerably 
increase the chance of finding an optimal solution.  
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1. Introduction 

Nowadays, real time multimedia constitutes a major portion of IP-based broadcast services 
[1]. The difference between these broadband and other traditional telecommunication 
services is their high sensitivity to factors affecting quality of service (QoS) such as resource 
level, propagation condition and stability [2]. In such services user experience depends 
directly on the QoS level. So, not only making improvements of quality of service is 
important for better providing this type of services, but also guaranteeing quality of service is 
necessary. 

In order to satisfy the QoS requirements in multimedia services, routing algorithms must 
be modified and adjusted to clarify the distinction between the data related to each service 
class to choose the best route to satisfy the QoS requirements [3]. Provision of QoS based on 
routing utilizes two common approaches:   

• Selecting a route which is able to supply the QoS requirements in the relevant class; 
• Using effective techniques to attain the maximum capacity of the network.  

Previous studies have proven that network coding technique increases the capacities and 
effectiveness of the network to bring its available capacity closer to maximum theoretical 
capacity [4]. A proper efficient information exchange using network coding has been 
presented by [5]. Due to the numerous advantages of network coding, many algorithms 
which previously used routing are being modified to incorporate network coding [6]. As an 
example, using network coding has made it possible address the nondeterministic problem of 
achieving minimum-cost multicast routing to increase network capability [7]. Meanwhile, 
using this technique maximum network throughput between the source and each receiver 
based on the max flow-min cut algorithm in a multicast session will be achievable by 
choosing the optimal sub-graph [8].  

The optimality of most existing multicast approaches based on seeking the optimal sub-
graph does not guarantee satisfaction of hard QoS constraints, although; they rely on 
optimization schemes to determine the proper flow sub-graphs to minimize cost functions [9], 
[10]. So, it appears that using coded-based multicasting optimization the maximum capacity 
of network is achievable and a reasonable procedure to finding an optimal sub-graph that 
guarantees QoS constraints will be possible. 

The present study uses the decomposition method to identify potential sub-graphs for a 
coded multicast session and applies route-selection mixed integer programming (MIP) 
method to tackle the path-flow framework [11] to determine the best sub-graph among all the 
potential sub-graphs which can satisfy QoS constraints with the minimum cost. However the 
path-flow algorithm used to find a coded multicast solution has a simple structure. 
Computational evaluations show that the approach presented in this paper, called “QoS-
aware coded multicast network” (QoSCM) is an efficient method for solving the problem of 
optimal multicast routing in which the primal-dual algorithm considers only trees their QoS 
level is aligned with user QoS constraints. 

Note that implementation of the model in distributed wireless networks having energy 
limits [12], Rician and Rayleigh fading, frequency interference and lack of centralized 
control over the network entities, faces critical challenges that do not exist in wired networks. 
In this regard, considering the nature of wireless environment, numerous studies have been 
carried out on the use of network coding in dynamic wireless networks [13], [14], [15]. In 
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[13], the authors tried to solve a multicast problem based on minimum energy using the 
advantages of dynamic multicast. The study in [15] proposed a distributed protocol 
supporting multiple unicast flows using the shared nature of interfaces in wireless networks. 
Also, Xi in [16] proposed a method of finding flow sub-graphs so that the minimum 
transmission rate is satisfied and the utilization function is at an optimum level. From this 
viewpoint, this scheme is somewhat similar to our proposed approach; however, some 
aspects of the introduced approach have not been considered in previous articles. The 
proposed scheme with the aim of guaranteeing the QoS constraints has been extended to 
distributed wireless networks using novel strategies and considering the dynamic 
characteristic of the network in dealing with interference.  

The present study focuses on dynamic wireless networks in which the flexible capacity of 
network links can be interpreted as a function of the signal to noise-interference (SINR) in 
the receiver. Such a wireless network dynamically adjusts link capacities by modifying the 
power allocated to each link. In fact, in order to increase achievability of the optimal sub-
graph, an optimization method is used for coded multicast based on a power control 
algorithm in the physical layer.  

It is important to note that resource allocation-based optimization should not exert an 
excessive computational load on the network so that network performance remains optimal. 
With regard to the points raised, we propose our distributed scheme as an iterative gradient 
algorithm; in which after receiving the control messages of neighboring nodes, the network 
flow variables which emerge as optimization Lagrange coefficients are updated locally by 
each node in each iteration. After convergence of the algorithm, the optimal power obtained 
can be allocated to the outgoing links of each node. Clearly, it is evident that the number of 
iterations required to reach the optimal value relates to the network scale in term of number 
of nodes and links.  

The continuation of this paper is structured as follows: first, Section II presents the 
problem and the formulation of guaranteeing the QoS constraints during coded multicast 
session based on minimum possible cost. Then, in Section III, in order to evaluate the 
functionality of QoSCM under actual conditions, we have introduced a framework to 
extending the proposed approach to wireless networks. Also two power allocation algorithms 
are proposed and the effectiveness of the scheme is analyzed using power control algorithm. 
Finally, after evaluation of the numerical results in part IV, the conclusions and 
recommendations for future study are presented.  

2. QoS-aware Network Coding 
In this section, the problem formulation and the coded-based flow algorithm are presented 
from the perspective of guaranteeing user QoS constraints. 

2.1 Network Model and Notation 
In this paper, the network is modeled with a G:(V, E) graph where V is the set of nodes with 
|V|=N and E is the set of network links (arcs) with |E|=L. In an individual multicast session, 
the source node Vs ∈  sends its data at the rate of r packets per unit time to each set of 

 receivers. In this model,  is the data packet sent from the transmitter towards the 
receiver  on link l. and the value of the final coded flow for each link shown as is 
obtained by combining the data flow sent from the transmitter to receivers. The 
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characteristics of each communication link are specified with the predetermined weight 
coefficients to implement the proposed scheme in this network model.  

The link coefficients represent total delay (d) and cost coefficient (e). The delay 
constraint and transmission rate of each link are preset fixed values. Each link delay is 
constant and calculated based on the propagation delay plus delay of the MAC layer. 
During transmission, each data stream belongs to a specific QoS class possessing specific 
quality constraints. Also, we consider M QoS class each of which has minimum 
transmission rate R and maximum threshold D for delay. Accordingly, the transmitter s 
only provides service where a sub-graph exists with the ability to guarantee the QoS 
constraints based on the class of requested service. Moreover, if more than one sub-graph is 
able to provide the QoS requirements, the sub-graph with the lowest cost is selected as the 
response sub-graph.  

The data units and coded flows toward destination t belonging to QoS class c passing 
through link l are denoted as and  respectively. The total coded flow for class 

c is denoted by . These coded flows will be sent independently by each link. The total 

flow transmitted by link l for class c is denoted by . Consequently, the coded flows 

belonging to class c and the set of all packet data                    (  are denoted as 
the Z and X matrix.  

Taking into account the end-to-end delay experienced by network flow, it is assumed 
that each link incurs a constant delay with value  on the flows for a given period of time. 
It is assumed that before running the algorithm, each node has measured the delay of its 
outgoing links; therefore,  could be viewed as the short-term average delay of link l. To 
consider the constraints of the nodes in terms of QoS and cost, node splitting technique was 
applied. For this purpose, the processing delay and the cost of the nodes are also considered 
when calculating the delay and cost of end-to-end connections. Fig. 1 shows that each node 
in the network is replaced by two dummy nodes and the connection between them is 
through a dummy link with a delay equal to the processing delay of the node [17]. Using 
this method, there are no alterations in the steps of algorithm implementation to guarantee 
QoS. Moreover, the cost for each coded data unit sent over link l denoted as and the total 
cost can be calculated by multiplying the total passing flow (  by the link cost coefficient 
( ). To determine the final end-to-end cost for each sub-graph, a constant cost coefficient 
for each node is allocated to the dummy link. 

 
Fig. 1. Node splitting technique via graph modification 
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The solution sub-graph must guarantee that each flow experiences the end-to-end delay 
below the upper bound  and should provide the minimum rate of  for all the end-to-
end connection relevant to class c. Utilizing network coding technique, the data flows 
belonging to the same QoS class are combined, although inter-class data combinations are 
prohibited. Accordingly, based on introduced framework, data passing through a link 
belongs to various classes in which, each class composed various data related to same class 
going toward different receivers. Using this approach, data belonging to each class 
experience a delay which is lower than the upper bound and will have a transmission rate 
larger than the minimum constraint specified for the class.  

2.2 Problem Formulation 
In line with the discussions presented in this paper, the target is to propose a solution for 
finding a sub-graph between the source and the receivers so that the end-to-end delay of 
each flow towards terminal t is not larger than upper bound and the throughput for each 
flow is not less than lower bound . In order to select the response sub-graph towards 
receiver t, if  is the set of all directed routes from the source node s to this receiver in 
network G, f(P) will be depicted as the number of flows passing through path p. In this case, 
if  denotes the path-link variable, it will be equal to 1 if link l belongs to path p; 
otherwise,  will be 0. In this way, the desired assessment of the cost calculation for 
each sub-graph can be carried out based on the links which make up that sub-graph. The 
sub-graph with minimum possible cost which satisfies the requirements of QoS will be 
selected as the solution for the problem. The link packet data ( can be calculated as 
shown in Equation (1).  
 

 
 

 

Through end-to-end connection, weighted path  can be defined as shown in 
Equation (1.a):  
 

 
 

 
In Equation (1.b), the upper bound of the weighted end-to-end path from transmitter s to 
receiver t is denoted as  which this constraint guarantees the most tolerable end-to-end 
deviations.  
 

 
 

Equation (1.b) can be written as: 
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Equation (1.c) should be guaranteed through each path included the optimal sub-graph. In 
order to use binary variables, the weighted constraint should be changed as Equation (1.d)  
 

  
 
In the equation (1.d) the source data rate shown as r and  Also, is 
equal to 1 only if path p is part of solution sub-graph between source and receivers. Under 
these circumstances, y(p) will be used in constraint (1.e) to guarantee the upper bound 
through the end-to-end weighted connection. By defining the binary variables, the 
formulation continues in binary mode as: 

 
(1.e) 

  
 
Optimal sub-graph selection procedures have functionalities that guarantee the weighted 
constraints and allow formulation of the cost function as shown in Equation (2). The cost 
function for the network is assumed to be convergent and will be an incremental relation 
based on the value of final flow (Z) passing through the links of each sub-graph. The final 
cost of each sub-graph can be obtained using the linear function of Equation (2) based on 
the sum of flows for all links and the cost coefficient related to the sub-graph links.  

 
(2) 

The relations of the coded-flow optimization problem can be defined based on guaranteed 
QoS as follows:  
 

 
(3) 

where: 
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Based on the introduced framework, Equation (4) always existed: 

 

 
(4) 

Equation (5) denotes the throughput constraint for each session based on the lower bound of 
throughput for each class.  
 

                 (5) 

 

 

 
Also, Equation (6) shows the delay constraint for each session based on the upper bound of 
delay relevant to each class.  

 
 

For class c, the delay constraints for the set of receivers shown as follow: 

 
(7) 

 
 

 

where: 

 
(9) 

  
 
To use node splitting technique, according to Fig. 1 we have:  
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The total end-to-end delay and cost constraints appear to be as follows: 
 

 
 

 

 

 
Based on these formulae, is the cost function of the problem and a decrease in its 
value will bring the sub-graph solution of the problem closer to an optimal value. Moreover, 

 and  denote the capacity of the link and linear cost coefficient for using the link, 
respectively, and  denotes the constraint for total delay of link l. In the formulation for the 
proposed model, is the minimum acceptable threshold of the transmission rate and  
is the maximum tolerable threshold for the end-to-end delay in class c.  refers the network 
max-flow/min-cut rate and  represents the actual class rate relevant to class c. 

Equation  provides the capacity constraint. This relation will ensure that the total 
value of the flow passing through a link cannot be higher than the capacity of that link. 
Equation  requires that the data transmission rate for class c must be higher than the 
minimum rate requested by the user. Equation  is rooted in the theorem of max flow-
min cut and indicates that the total rate of data transmission for all classes will be lower 
than the max-flow rate of the network. Note that the max-flow rate is the maximum 
theoretical rate of the network. 

Equations (7) and (8) represent the end-to-end delay constraint in which the maximum 
tolerable delay of class c must be lower than the defined threshold for this class. Equation 

 shows the necessity for nonnegative flow constraint. In other words, the direction for 
the coded flow is always constant and a link is not capable of sending a flow in both 
directions. Also, equations (10) and (11) refer to the total end-to-end delay and cost 
constraints. By accounting for the constraints of the problem, solving Equation  will 
result in the solution with the lowest possible cost among the sub-graphs satisfying the 
requirements of QoS.  

In order to solve the formulized problem, the convex optimization methods are used to 
reduce the complexity of problem using primal-dual techniques and dividing the problem 
into sub-problems with lower complexity. Using this defined framework, achieving to QoS 
constraint with minimum cost is possible in the form of coded multicast optimization model. 
As shown in [18], the separate use of these two techniques: finding optimal flow sub-graphs 
and using coding techniques, will not affect the optimal nature of the combination methods. 
So other coding methods can be used to increase the performance of the scheme [19].  

The next section extends the proposed approach to wireless networks. For this purpose, 
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two distributed resource allocation algorithms; random power allocation (RPA) and 
gradient power allocation (GPA) have been introduced. The performance of the proposed 
method in more practical scenarios will be assessed by considering the limitations and 
constraints of real wireless networks. 

3.  Applying the Proposed Algorithm for Realistic Wireless Networks 
The evaluation of previous schemes indicates that using optimal routing techniques in 
centralized networks makes finding the optimal sub-graph possible [20]. However, in 
distributed wireless networks, implementation of QoS assurance services is more difficult 
because the lack of centralized control over network entities, limited available resources 
and the Rician/Rayleigh fading that arise in the propagation environment. Accordingly, to 
implement the proposed approach, it was extended in a distributed manner taking into 
account the specific characteristics of wireless networks. Also, resource allocation and 
power control techniques were employed in this dynamic model in which the capacity of 
the links varies based on allocated resource.  

Our proposed model is composed of two major phases. In the first phase, the optimal 
transmission power level for each node that maximize the total network capacity are found. 
Then, in the second phase, to reduce the number of unavailable links in the sub-graph and 
satisfy the total constraint for the total aggregated transmission power of all nodes in the 
network, a power control algorithm is used. The transmitters which signal-to-interference-
plus noise ratio (SINR) of their outgoing links lies below the acceptable threshold are 
allowed to increase their transmission power so that the SINR of their link satisfies the 
minimum acceptable threshold for reliable transmission.  

 

3.1 RPA-based Power Control 
As indicated, to use a power control algorithm in a wireless network, a power allocation 
method is required to allocate resources dynamically based on environmental factors like 
interference and noise. To enhance the number of available links, RPA is proposed to 
satisfy the interference constraints and enhance connection stability. In the proposed 
approach, each node is locally able to individually determine the sub-session rate in its 
outgoing links [21]. The RPA algorithm determines a set of transmission powers for the 
nodes included the sub-graph besides of satisfying the total aggregated transmission power 
constraint. 

This could make some previously unavailable links available by increasing their 
transmission power levels. It is assumed that the wireless network is interference limited, so 
that the capacity of link , denoted as , is a nonnegative function of the SINR at the 
receiver of the link, i.e., . It is also assumed that  is increasing, 
concave, and continuously differentiable. For , the end point (j) determines the 
value of the SINR according to matrix G by Equation (12): 
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In the SINR formula,  is the noise power at receiver node j and  represents the gain of 
a link between nodes i and j. Corresponding matrix G can be obtained as:  
 
 

        
 

 

The set of allocated powers to the set of nodes denoted by the vector  , 
so that: 

 .  

It should be noted that each node can assign primary power to its outgoing links by 
considering its individual power limitation: , where  is the power 
allocated to the transmitter of link ij from node i toward node j,  is the aggregated power 
of node i on all of its outgoing links, and  is an acceptable threshold for . 

To confirm the accuracy of the data received in the receiver, the value of the SINR is 
considered as the criterion for reliability of data transmission. In this way, by calculating 
the value of SINR at the end point of each link, the probability of temporary failure in that 
link can be estimated. Using the calculated SINR, the link new capacities can be determined 
as shown in Equation (14). 
 

        
 

 

For wireless networks to have reliable transmission, calculated SINR in end point of link 
should be greater than acceptable threshold which this threshold known as the node 
sensitivity level. This threshold is assumed to be constant for all nodes in the network. 
Failed or unavailable links assumed which their SINR is below than threshold and such 
unavailable links will be ignored during the process of finding the solution. So, they will 
not be included in the potential solutions. It is evident that, by increasing the number of 
failure links, the probability of finding the optimal solution will decrease. It will also 
increase the cost of the obtained sub-graph. In RPA, the nodes located at starting point of 
corrupted links are allowed to increase their transmission power to satisfy the minimum 
SINR requirements for reliable transmission. Note that the maximum aggregated 
transmission power for all nodes in the network is considered to be constant.  

The main advantage of using the RPA as the power allocation algorithm is its simplicity 
and ability to reduce the complexity of the proposed solution. Otherwise, its main drawback 
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is its sub-optimality and blind nature of power allocation instead of intelligent allocation. 
The next section proposes an algorithm which eliminates these drawbacks and enhances the 
efficiency of the power allocation algorithm using the gradient optimization techniques.  

3.2 GPA-based Power Control 
Most literatures in network coding based optimization such as [16] have only focused on 
acquiring an optimum value for applied utilization function in a cross-layer framework. But, 
such dynamic optimization algorithms are not effectively possible. The main difference 
between the proposed approach and such other schemes is its efficiently dynamic properties 
which introduced a gradient-based optimization framework in order to optimal power 
allocation with low computational complexity. 

Determining the optimal values in the proposed model is not purely based on local node 
variables. This method solves optimization Lagrange equations iteratively; each node 
calculates the updated Lagrange coefficients and uses them for the next iteration of the 
power allocation algorithm. In the system model, it is assumed that the system has N users, 
and the  user has a data rate equal to   bits per symbol.  is the number of bits 
allocated to the  class-carrier for the  user. In the transmission channels, different 
class-carriers will experience different channel gains, denoted by , the magnitude of the 

 class-carrier seen by the  user. It is assumed that  is white noise and is equal for 
all class-carriers and the same for all users. The goal of this approach is the best assignment 
of  which besides of satisfying total power constraint, the capacity of links has been 
maximized. Note that this problem can be formulated either to minimize the transmission 
powers besides satisfying the given QoS requirements or to improve the user QoS 
parameters for a fixed overall transmission power. The formulation for the second approach 
can be achieved by changing the class-carrier power levels proportionally using the same 
set of . The enhancement in quality can be demonstrated by the increase in total user 
transmission rate (R) as follows: 
 

 

 

Replacing with its equivalent in Equation (15) results the formulation of the goal 
function in Equation (16). The goal of this formula is to maximize the weighted aggregation 
rate of the network users considering total power constraints.  
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where each user is allowed to transmit at a rate associated with  which is related user 
priority and  a coefficient with values within the interval 0 and 1 associated with the  
class-carrier for c = 1,2,..,M. The Lagrange equation in Equation (17) is used to take the 
problem constraints into account. 

The channel coefficient for the  transmitter node on the  class is denoted by  
and includes the path loss, Rayleigh fading factor, and constant coefficients for the 
transmitter and receiver antenna. Moreover,  indicates the SINR-gap which is function of 
coding and modulation and the bit error ratio (BER). For example, for the modulation of 
non-coded QAM, the SINR-gap  will be shown as  and  denotes the 
noise of class c for the node k. 
 

 

(17
) 

Assuming that the derivation of Equation (17) is equal to zero, the optimal power allocated 
to each class-carrier can be obtained. For each iteration of the power assignment algorithm, 
a current power of the class-carrier that does not satisfy the reliability will be modified and 
the Lagrange coefficient will be updated accordingly. After R iterations, the algorithm 
provides an optimal transmission power for each class-carrier as demonstrated by . 

 

(18) 

Where  is a Lagrange coefficient associated with transmission power constraints. Equation 
(19) can be solved by defining auxiliary variable g as: 
 

)(

2)(
)( ||

c
k

c
kc

k n
hg =

 

 
(19) 

The optimal power allocation formulation in Equation (19) is very similar to the common 
waterfilling problem. In this formulation, power is assigned to nodes based on the 
difference in their weighting coefficients. Each class-carrier of user k is assigned to a flow 
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level equal to . After waterfilling, the different users have flow levels that are 

proportional to their weighting coefficients. The users with the higher weighting factors 
have higher flow levels and can allocate more power to their class-carriers. The Equation 
(20) can be used to convert a single level waterfilling to a multilevel. 

 
(20) 

Starting with small values for initial Lagrange coefficients, the coefficients are modified in 
each iteration so that the data rate constraints of different users are satisfied in each node. 
Each node is treated in turn using the new allocated power until the SINR in the output of 
the links with temporary failure reach at a minimum level of sensitivity. When the link is 
recovered, the possibility of obtaining a solution sub-graph in the QoSCM algorithm will 
increase. In this way, the data rate constraint and dedicated power constraint for all nodes 
are satisfied and the algorithm will converge.  

 
(21) 

The solution to Equation (21) leads to optimal values for maximizing . The gradient 
method can be used to solve the problem to obtain a distributed solution. According to the 
steepest descent lemma, we have Equation (22): 
 

 (22) 

 
where   is the step size and . Using Equation (22) and according to 
dual function derivation, we will have Equation (23). 
 

 
(23) 

Using the Lagrange coefficient ( ), the class-carrier powers in the next iteration can be 
calculated as in Equation (24): 
 

)          (24) 

The Lagrange coefficient  can be updated for the next step in Equation (25) during 
successive iterations. 
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(25) 

Based on the algorithm performance, the SINR can be calculated as the reliability of the 
transmission in the output of each link. By calculating the value of this parameter, the status 
of the link becomes clear and the temporary failures can be determined with greater 
confidence. The new SINR can be used to calculate their new capacities as .  

To achieve transmission reliability, the SINR value at the end point of each link is 
compared with the minimum SINR required for reliable transmission. In fact, the acceptable 
SINR threshold is the sensitivity level of the node. If the calculated SINR value is lower than 
the sensitivity, temporary failure is considered to have occurred for that link and the link 
will be removed from the set of potential sub-graphs. It is evident that, frequent link failure 
decreases the possibility of finding a solution sub-graph which satisfies the QoS 
requirements and increases the cost. To prevent link failure, the power control algorithm is 
used to gradually increase the transmission power of the node located at the beginning point 
of the failure links. It should be noted that during all the steps of power control, the total 
power allocated to all nodes must not exceed a pre-determined value.  

4.  Experimental Results 
The performance of our proposed algorithm QoSCM was evaluated under different 
scenarios. For this purpose, two experiment modes were considered: one mode relates to 
QoS provision without considering interference constraints, for wired networks and another 
one considers the interference constraints for wireless environments. The proposed 
algorithm is compared in both modes with the minimum-cost multicast over coded network 
(MCNC) [18] and the delay-constrained minimum cost multicasting in traditional packet 
networks (CMCT) [22]. CMCT presents a solution by finding a minimum cost tree as the 
optimal solution and satisfying the constraints for the delay parameter without using a 
network coding mechanism. MCNC finds the minimum cost sub-graph between the source 
and destination using coding techniques without satisfying any QoS constraint. 

The proposed algorithm was first simulated in its basic mode to find an optimal sub-
graph to satisfy QoS constraints with minimum possible cost without considering 
interference. This was then extended to enhanced mode by introducing the effects of 
interference constraints into the problem. To compare the results of CMCT and MCNC 
algorithms, a multiple scenario was generated in which source s, which transmits in 
multicast mode, has three terminals ,  and . The QoS classes were determined with 
maximum transmission rates equal to 2 and 1 assuming a maximum tolerable delay of 4, 10, 
and 8 units as acceptable thresholds for the three receivers, respectively. To evaluate and 
also compare the resulted graph with other schemas, we have implemented the method by 
one QoS class with lower bound 1 for transmission rate. 
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Each link is associated with two entries (delay, cost). Fig. 2 shows the delay and cost 
coefficients respectively, related to each link. The solution obtained by the MCNC 
algorithm which only considers the links costs shown in Fig. 3, although minimum cost 
multicast over the coded network does not satisfy QoS constraints. The sub-graph extracted 
by CMCT is shown in Fig. 4. Note that this solution is achieved without the use of coding 
schemes. The solution obtained by QoSCM has been shown in Fig. 5 in which reducing the 
end-to-end delay and satisfying the transmission rate requirement for each class are the 
priorities to achieving the QoS target and minimizing the sub-graph cost. 

 

 
Fig. 2.  Delay weight and Cost coefficient of each link 

 
Fig. 3.  MCNC algorithm sub-graph solution 
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Fig. 4. CMCT algorithm sub-graph solution 

 

 
Fig. 5. QoSCM algorithm sub-graph solution 

 

The solutions and cost of finding an optimal sub-graph to satisfy QoS constraints by the 
QoSCM algorithm were compared with the MCNC algorithm in Table 1. It is clear that 
decreasing the constraint level of the delay reduces the cost of finding an optimal sub-graph. 
The lower bound of transmission rate (R) is a constant parameter with a value that is twice 
that of the first class value of the second class. The maximum transmission rate was 
assumed to be 2 for the first and 1 for second class. 
It is evident in the case that the range of the upper bound and lower bound thresholds for 
the service classes is not very strict, the MCNC algorithm will have a solution similar to the 
QoSCM algorithm at a lower cost. However, when the threshold becomes stricter, in the 
sub-graph obtained by MCNC, the delay of some flows will be higher than the threshold for 
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QoS in classes 1 and 2 (values indicated in bold and italics, respectively). It is clear that the 
desired level of service quality is not acceptable.  
 

Table 1. Performance evaluation of MCNC and QoSCM 

 
To compare the cost of QoSCM with similar schemes, the network is considered to be 
random. It is assumed that there is an arc with a probability of 0.2 between  and  nodes. 
Nevertheless, the basis for the presence of a link between two nodes can be interpreted 
based on the fact that the distance between two nodes is less than a constant value. The 
linear cost coefficient related to each link is assumed to be a random number from interval 
[1  5] and the weight coefficient of each link is assumed to be selected randomly from 
interval [1  10].  
In the three scenarios with different number of nodes in Table 2, increasing the size of the 
network increases the cost of finding a solution. It is clear increased cost using the QoSCM 
algorithm is more than MCNC because the functionality of MCNC is based on minimum 
cost and it does not satisfy QoS constraints. Also, the QoSCM has less optimal-cost in 
comparison with CMCT because of its packet coding ability. 
 

Table 2. Cost comparison of MCNC, CMCT and QoSCM  

No. of 
Nodes 

Algorithm Total Cost  

(2 sinks) (4 sinks) 

(15) 
Nodes 

MCNC 17.2 33.1 

CMCT 21.3 37.2 
QoSCM 19.1 36.8 

No. of 
Nodes 

Algorithm C
lass

 C
onst

 Delay 
 
 
(2 sinks) 

 
(4 sinks) 

Total Cost 
 
 

(2 sinks)    

15 
MCNC  1 6 (4,9) (6,5,4,4) 17.2 2 8 (5,9) (6,7,4,6) 

QoSCM 1 6 (5,5) (5,4,4,5) 21.1 2 8 (6,7) (7,5,6,6) 

20 
MCNC  1 9 (12,8) (12,8,7,6) 19.2 2 11 (12,8) (12,8,7,7) 

QoSCM 1 9 (7,6) (7,8,7,7) 25.3 2 11 (10,8) (11,9,7,9) 

32 
MCNC  1 12 (15,13) (13,13,11,8) 27.7 2 15 (14,12) (17,9,10,12) 

QoSCM 
1 12 (11,12) (11,9,11,8) 

36.1 2 15 (11,14) (14,12,9,13) 
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(20) 
Nodes 

MCNC 19.2 44.1 

CMCT 28.7 76.5 
QoSCM 25.3 66.7 

(32) 
Nodes 

MCNC 27.0 53.1 

CMCT 45.2 83.2 
QoSCM 36.1 67.0 

 
To evaluate the effects of the proposed power allocation algorithms (RPA and GPA) at 
different levels of QoS constraint, the probability of finding a solution and the cost of 
proposed QoS coded multicast (QoSCM) were compared in two different modes. First, the 
QoSCM has been evaluated individual without a power control feature. Then, evaluation of 
QoSCM done with power allocation features (random and gradient). 

Table 3 shows that for highly strict QoS constraints, neither could find an optimal 
solution. By gradually reducing the QoS constraint, for the constraint (6, 9) relevant to two 
receivers, the QoSCM algorithm in combination with GPA found an optimal solution while 
the two other approaches could not find a solution. These results were predictable because 
the gradient-based power allocation algorithm is the most efficient. Also, with the looser 
QoS constraints, other two approaches found a solution at nearly identical costs and number 
of iterations because despite some links have been corrupted, the majority of potential sub-
graphs satisfied the QoS constraints. 
 
 

Table 3. Optimality evaluation of QoSCM algorithm in combination with RPA and  
GPA power allocation schemes 

Constraints Algorithm Performance 

SUCCESS COST ITERATION 

(5,7) QoSCM NO ---- ---- 

QoSCM+GPA NO ---- ---- 
QoSCM+RPA NO ---- ---- 

(6,9) QoSCM NO ---- ---- 

QoSCM+GPA YES 33.57 126 
QoSCM+RPA NO ---- ---- 

(9,11) QoSCM NO ---- ---- 
QoSCM+GPA YES 27.20 113 
QoSCM+RPA NO ---- ---- 

(10,12) QoSCM  YES 38.31 60 
QoSCM+GPA YES 22.1 94 
QoSCM+RPA YES 28.78 64 

(14,17) QoSCM YES 24.11 32 
QoSCM+GPA YES 20.89 71 
QoSCM+RPA YES 20.89 36 
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Table 3 shows that, when all the algorithms arrived at a solution, the optimality of solutions 
found by the QoSCM algorithm in combination with GPA was much better than that of the 
solution found by the basic QoSCM algorithm, although the iterations required to achieve a 
solution was much higher than those required by the QoSCM individual. So, the complexity 
of the GPA is higher than for the RPA; however, in environments with high interference, 
the GPA can better satisfy strict QoS requirements of multicast sessions. 

Fig. 6 shows an example of the QoSCM convergence. As shown in this figure, the 
bounded cost converges to an optimal value. 

 

 
Fig. 6. Bounded algorithm’s convergence during iterations with 

60 nodes and 5 receivers 

5.  Conclusion and Future Works 
The present paper proposed a flow-based optimization approach for distributed wireless 
networks in which coded flow multicasting has been utilized for guaranteeing the QoS 
constraints by finding an optimal sub-graph. In comparison to other schemes, the simulation 
results reveal that although the cost of the proposed model is somewhat more than MCNC 
algorithm, however it can better satisfy the QoS requirements of multicast sessions and its 
cost is lower than CMCT. Also, a discrete power control scheme was also applied for the 
QoS-aware multicast model to accommodate the effect of transmission power level based 
on link capacity requirements. we proposed random power allocation (RPA) and gradient 
power allocation (GPA) algorithms to efficient resource distribution and to increase link 
resistance to temporal failure caused by interference and noise. The simulation results prove 
that using introduced gradient power allocation algorithm considerably increases the chance 
of finding an optimal sub-graph. 

A further study with more focus on other requirements of wireless networks are 
therefore recommended, such as considering different types of fading. Also, further 
research might investigate determining the propagation model intelligently based on 
environmental conditions. 
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