References
- Agarwal A, Ng WJ, L iu Y . 2011. Principle and applications of microbubble and nanobubble technology for water treatment. Chemosphere 84: 1175-1180. https://doi.org/10.1016/j.chemosphere.2011.05.054
- An genent L, Karim K, Al-Dahhan MH, Wrenn BA, Domiguez-Espinosa R. 2004. Production of bioenergy and biochemicals from industrial and agricultural wastewater. Trends Biotechnol. 22: 477-485. https://doi.org/10.1016/j.tibtech.2004.07.001
- Boopathy R. 1998. Biological treatment of swine waste using anaerobic baffled reactors. Bioresour. Technol. 64: 1-6. https://doi.org/10.1016/S0960-8524(97)00178-8
- Gi l GC, Chang IS, Kim BH, Kim M, Jang JK, Park HS, Kim HJ. 2003. Operational parameters affecting the performance of a mediator-less microbial fuel cell. Biosens. Bioelectron. 18: 327-324. https://doi.org/10.1016/S0956-5663(02)00110-0
- He Z, Kan J, Wang Y, Huang Y, Mansfeld F, Nealson KH. 2009. Electricity production coupled to ammonium in a microbial fuel cell. Environ. Sci. Technol. 43: 3391-3397. https://doi.org/10.1021/es803492c
- Jang JK, Chang IS, Moon H, Kang KH, Kim BH. 2006. Nitrilotriacetic acid degradation under microbial fuel cell environment. Biotechnol. Bioeng. 95: 772-774. https://doi.org/10.1002/bit.20820
- Jang JK, Choi JE, Ryou YS, Lee SH, Lee EY. 2012. Effect of ammonium and nitrate on current generation using dualcathode microbial fuel cell. J. Microbiol. Biotechnol. 22: 270-273. https://doi.org/10.4014/jmb.1110.10040
- Jang JK, Pham TH, Chang IS, Kang KH, Moon H, Cho KS, Kim BH. 2004. Construction and operation of a novel mediator- and membrane-less microbial fuel cell. Process Biochem. 39: 1007-1012. https://doi.org/10.1016/S0032-9592(03)00203-6
- Jang JK, Sung JH, Kang YK, Kim YH. 2015. The effect of the reaction time increases of microbubbles with catalyst on the nitrogen reduction of livestock wastewater. J. Korean Soc. Environ. Eng. 37: 578-582. https://doi.org/10.4491/KSEE.2015.37.10.578
- Kim J, Chen M, Kishida N, Sudo R. 2004. Integrated realtime control strategy for nitrogen removal in swine wastewater treatment using sequencing batch reactors. Water Res. 38: 3340-3348. https://doi.org/10.1016/j.watres.2004.05.006
- Kishida N, Kim J, Chen M, Sasaki H, Sudo R. 2003. Effectiveness of oxidation-reduction potential and pH as monitoring and control parameters for nitrogen removal in swine wastewater treatment by sequencing batch reactors. J. Biosci. Bioeng. 96: 285-290. https://doi.org/10.1016/S1389-1723(03)80195-0
- Kudryashov SV, Ryabov AY, Ochered'ko AN, Krivtsova KB, Shchyogoleva GS. 2015. Removal of hydrogen sulfide from methane in a barrier discharge. Plasma Chem. Plasma Process. 35: 201-215. https://doi.org/10.1007/s11090-014-9590-9
- Lee D. 2003. Removal of aqueous ammonia to molecular nitrogen by catalytic wet oxidation. Kor. Soc. Environ. Eng. 25: 889-897.
- Lee I, Lee E, Lee H, Lee K. 2011. Removal of COD and color from anaerobic digestion effluent of livestock wastewater by advanced oxidation using microbubble ozone. Appl. Chem. Eng. 22: 617-622.
- Lee J, Jin B , Cho S, Jung K, Han S. 2002. Advanced wet oxidation of Fe/MgO: catalystic ozonation of humic acid and phenol. Theor. Appl. Chem. Eng. 8: 4573-4575.
- Logan BE, Hamelers B, Rozendal R, Schroder U, Keller J, Freguia S, et al. 2006. Microbial fuel cells: methodology and technology. Environ. Sci. Technol. 40: 5181-5192. https://doi.org/10.1021/es0605016
- Lovley DR. 2006. Bug juice: harvesting electricity with microorganisms. Nature 4: 497-508.
- Marui T. 2013. An introduction to micro/nano-bubbles and their applications. Syst. Cybern. Inform. 11: 68-73.
- Min B, Kim JR, Oh S, Regan JM, Logan BE. 2005. Electricity generation from swine wastewater using microbial fuel cells. Water Res. 39: 4961-4968. https://doi.org/10.1016/j.watres.2005.09.039
- Nam JY, Kim HW, Shin HS. 2010. Ammonia inhibition of electricity generation in single-chambed microbial fuel cells. J. Power Sources 195: 6428-6433. https://doi.org/10.1016/j.jpowsour.2010.03.091
- Rabaey K, Verstraete W. 2005. Microbial fuel cells: novel biotechnology for energy generation. Trends Biotechnol. 23: 291-298. https://doi.org/10.1016/j.tibtech.2005.04.008
- Rajagopal R, Masse D I, S ingh G. 2013. Acritical review on inhibition of anaerobic digestion process by excess ammonia. Bioresour. Technol. 143: 632-641. https://doi.org/10.1016/j.biortech.2013.06.030
- Ravaey K, Lissens G, Siciliano SD, Verstraete W. 2003. A microbial fuel cell capable of converting glucose to electricity at high rate and efficiency. Biotechnol. Lett. 25: 1531-1535. https://doi.org/10.1023/A:1025484009367
- Shin J , Lee S, Jung J, Chung Y, Noh S. 2005. Enhanced COD and nitrogen removal for the treatment of swine wastewater by combining submerged membrane bioreactor (MBR) and anaerobic upflow bed filter (AUBF) reactor. Process Biochem. 40: 3769-3776. https://doi.org/10.1016/j.procbio.2005.06.012
- Takahashi M, Chiba K, Li P. 2007. Free-radical generation from collapsing microbubbles in the absence of a dynamic stimulus. J. Phys. Chem. B 111: 1343-1347. https://doi.org/10.1021/jp0669254
- Terasaka K, Hirabayashi A, Nishino T, Fujioka S, Kobayashi D. 2011. Development of microbubble aerator for waste water treatment using aerobic activated sludge. Chem. Eng. Sci. 66: 3172-3179. https://doi.org/10.1016/j.ces.2011.02.043
- Wagner RC, Regan JM, Oh S, Zuo Y, Logan BE. 2009. Hydrogen and methane production from swine wastewater using microbial electrolysis cells. Water Res. 43: 1480-1488. https://doi.org/10.1016/j.watres.2008.12.037