References
- Arnosti C. 2011. Microbial extracellular enzymes and the marine carbon cycle. Annu. Rev. Mar. Sci. 3: 401-425. https://doi.org/10.1146/annurev-marine-120709-142731
- Boutaiba S, Bhatnagar T, Hacene H, Mitchell D, Baratti J. 2006. Preliminary characterisation of a lipolytic activity from an extremely halophilic archaeon, Natronococcus sp. J. Mol. Catal. B Enzym. 41: 21-26. https://doi.org/10.1016/j.molcatb.2006.03.010
- Henrissat B, Davies G. 1997. Structural and sequence-based classification of glycoside hydrolases. Curr. Opin. Struct. Biol. 7: 637-644. https://doi.org/10.1016/S0959-440X(97)80072-3
- Hough DW, Danson MJ. 1999. Extremozymes. Curr. Opin. Chem. Biol. 3: 39-46. https://doi.org/10.1016/S1367-5931(99)80008-8
-
Hughes C, Malki G, Loo C, Tanner A, Ganeshkumar N. 2003. Cloning and expression of
${\alpha}$ -D-glucosidase and Nacetyl-${\beta}$ -glucosaminidase from the periodontal pathogen, Tannerella forsythensis (Bacteroides forsythus). Oral Microbiol. Immunol. 18: 309-312. https://doi.org/10.1034/j.1399-302X.2003.00091.x - Kitamura M, Okuyama M, Tanzawa F, Mori H, Kitago Y, Watanabe N, et al. 2008. Structural and functional analysis of a glycoside hydrolase family 97 enzyme from Bacteroides thetaiotaomicron. J. Biol. Chem. 283: 36328-36337. https://doi.org/10.1074/jbc.M806115200
- Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B. 2014. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 42: D490-D495. https://doi.org/10.1093/nar/gkt1178
- Médigue C, Krin E, Pascal G, Barbe V, Bernsel A, Bertin PN, et al. 2005. Coping with cold: the genome of the versatile marine Antarctica bacterium Pseudoalteromonas haloplanktis TAC125. Genome Res. 15: 1325-1335. https://doi.org/10.1101/gr.4126905
- Mevarech M, Frolow F, Gloss LM. 2000. Halophilic enzymes: proteins with a grain of salt. Biophys. Chem. 86: 155-164. https://doi.org/10.1016/S0301-4622(00)00126-5
- Naumoff DG. 2005. GH97 is a new family of glycoside hydrolases, which is related to the alpha-galactosidase superfamily. BMC Genomics 6: 112. https://doi.org/10.1186/1471-2164-6-112
-
Noguchi A, Nakayama T, Hemmi H, Nishino T. 2003. Altering the substrate chain-length specificity of an
${\alpha}$ -glucosidase. Biochem. Biophys. Res. Commun. 304: 684-690. https://doi.org/10.1016/S0006-291X(03)00647-8 - Oh E-J, Lee Y-J, Chol J, Seo MS, Lee MS, Kim GA, Kwon ST. 2008. Mutational analysis of Thermus caldophilus GK24 beta-glycosidase: role of His119 in substrate binding and enzyme activity. J. Microbiol. Biotechnol. 18: 287-294.
-
Okuyama M. 2011. Function and structure studies of GH family 31 and 97
${\alpha}$ -glycosidases. Biosci. Biotechnol. Biochem. 75: 2269-2277. https://doi.org/10.1271/bbb.110610 -
Okuyama M, Kitamura M, Hondoh H, Kang M-S, Mori H, Kimura A, et al. 2009. Catalytic mechanism of retaining
${\alpha}$ -galactosidase belonging to glycoside hydrolase family 97. J. Mol. Biol. 392: 1232-1241. https://doi.org/10.1016/j.jmb.2009.07.068 - Okuyama M, Yoshida T, Hondoh H, Mori H, Yao M, Kimura A. 2014. Catalytic role of the calcium ion in GH97 inverting glycoside hydrolase. FEBS Lett. 588: 3213-3217. https://doi.org/10.1016/j.febslet.2014.07.002
-
Pavlovic M, Dimitrijevic A, Bezbradica D, Milosavic N, Gavrovic-Jankulovic M, Segan D, Velickovic D. 2014. Dual effect of benzyl alcohol on
${\alpha}$ -glucosidase activity: efficient substrate for high yield transglucosylation and noncompetitive inhibitor of its hydrolytic activity. Carbohydr. Res. 387: 14-18. https://doi.org/10.1016/j.carres.2013.08.028 - Rao L, Zhao X, Pan F, Li Y, Xue Y, Ma Y, Lu JR. 2009. Solution behavior and activity of a halophilic esterase under high salt concentration. PLoS One 4: e6980. https://doi.org/10.1371/journal.pone.0006980
- Saburi W, Rachi-Otsuka H, Hondoh H, Okuyama M, Mori H, Kimura A. 2015. Structural elements responsible for the glucosidic linkage-selectivity of a glycoside hydrolase family 13 exo-glucosidase. FEBS Lett. 589: 865-869. https://doi.org/10.1016/j.febslet.2015.02.023
-
Shirai T, Hung VS, Morinaka K, Kobayashi T, Ito S. 2008. Crystal structure of GH13
${\alpha}$ -glucosidase GSJ from one of the deepest sea bacteria. Proteins 73: 126-133. https://doi.org/10.1002/prot.22044 -
Tagami T, Yamashita K, Okuyama M, Mori H, Yao M, Kimura A. 2015. Structural advantage of sugar beet
${\alpha}$ -glucosidase to stabilize the Michaelis complex with longchain substrate. J. Biol. Chem. 290: 1796-1803. https://doi.org/10.1074/jbc.M114.606939 - Zhang C, Kim S-K. 2010. Research and application of marine microbial enzymes: status and prospects. Marine Drugs 8: 1920-1934. https://doi.org/10.3390/md8061920
Cited by
- Characterization of a new multifunctional beta-glucosidase from Musca domestica vol.39, pp.8, 2016, https://doi.org/10.1007/s10529-017-2351-0
- Improving the thermostability of a GH97 dextran glucosidase by rational design vol.42, pp.11, 2016, https://doi.org/10.1007/s10529-020-02928-8