References
- Acevedo F, Gentina J, Valencia P. 2004. Optimization of pulp density and particle size in the biooxidation of a pyritic gold concentrate by Sulfolobus metallicus. World J. Microbiol. Biotechnol. 20: 865-869. https://doi.org/10.1007/s11274-004-1006-1
- Ahmadi A, Schaffie M, Petersen J, Schippers A, Ranjbar M. 2011. Conventional and electrochemical bioleaching of chalcopyrite concentrates by moderately thermophilic bacteria at high pulp density. Hydrometallurgy 106: 84-92. https://doi.org/10.1016/j.hydromet.2010.12.007
- Astudillo C, Acevedo F. 2008. Adaptation of Sulfolobus metallicus to high pulp densities in the biooxidation of a flotation gold concentrate. Hydrometallurgy 92: 11-15. https://doi.org/10.1016/j.hydromet.2008.02.003
- Basson P, Gericke M, Grewar TL, Dew DW, Nicol MJ. 2013. The effect of sulphate ions and temperature on the leaching of pyrite. III. Bioleaching. Hydrometallurgy 133: 176-181. https://doi.org/10.1016/j.hydromet.2013.01.008
- Boogerd F, Bos P, Kuenen J, Heijnen J, Van der Lans R. 1990. Oxygen and carbon dioxide mass transfer and the aerobic, autotrophic cultivation of moderate and extreme thermophiles: a case study related to the microbial desulfurization of coal. Biotechnol. Bioeng. 35: 1111-1119. https://doi.org/10.1002/bit.260351106
- Breed AW, Harrison STL, Hansford GS. 1997. A preliminary investigation of the ferric leaching of a pyrite/arsenopyrite flotation concentrate. Miner. Eng. 10: 1023-1030. https://doi.org/10.1016/S0892-6875(97)00081-2
- Brierley C. 2010. Biohydrometallurgical prospects. Hydrometallurgy 104: 324-328. https://doi.org/10.1016/j.hydromet.2010.03.021
- Brierley CL, Brierley JA. 2013. Progress in bioleaching: part B: applications of microbial processes by the minerals industries. Appl. Microbiol. Biotechnol. 97: 7543-7552. https://doi.org/10.1007/s00253-013-5095-3
- Cai Y, Pan Y, Xue J, Sun Q, Su G, Li X. 2009. Comparative XPS study between experimentally and naturally weathered pyrites. Appl. Surface Sci. 255: 8750-8760. https://doi.org/10.1016/j.apsusc.2009.06.028
- Chernyshova IV. 2003. An in situ FTIR study of galena and pyrite oxidation in aqueous solution. J. Electroanal. Chem. 558: 83-98. https://doi.org/10.1016/S0022-0728(03)00382-6
- Ciftci H, Akcil A. 2010. Effect of biooxidation conditions on cyanide consumption and gold recovery from a refractory gold concentrate. Hydrometallurgy 104: 142-149. https://doi.org/10.1016/j.hydromet.2010.05.010
- Ciftci H, Akcil A. 2013. Biohydrometallurgy in Turkish gold mining: first shake flask and bioreactor studies. Miner. Eng. 46-47: 25-33. https://doi.org/10.1016/j.mineng.2013.03.020
- Clark D, Norris P. 1996. Oxidation of mineral sulphides by thermophilic microorganisms. Miner. Eng. 9: 1119-1125. https://doi.org/10.1016/0892-6875(96)00106-9
- Deveci H. 2002. Effect of solids on viability of acidophilic bacteria. Miner. Eng. 15: 1181-1189. https://doi.org/10.1016/S0892-6875(02)00267-4
- Deveci H, Jordan MA, Powell N, Alp I. 2008. Effect of salinity and acidity on bioleaching activity of mesophilic and extremely thermophilic bacteria. Trans. Nonferrous Metals Soc. China 18: 714-721. https://doi.org/10.1016/S1003-6326(08)60123-5
- Dopson M, Lindstrom E. 2004. Analysis of community composition during moderately thermophilic bioleaching of pyrite, arsenical pyrite, and chalcopyrite. Microb. Ecol. 48: 19-28. https://doi.org/10.1007/s00248-003-2028-1
- Fantauzzi M, Licheri C, Atzei D, Loi G, Elsener B, Rossi G, Rossi A. 2011. Arsenopyrite and pyrite bioleaching: evidence from XPS, XRD and ICP techniques. Anal. Bioanal. Chem. 401: 2237-2248. https://doi.org/10.1007/s00216-011-5300-0
- Fomchenko NyV, Muravyov MI, Kondrat'eva TF. 2010. Two-stage bacterial-chemical oxidation of refractory goldbearing sulfidic concentrates. Hydrometallurgy 101: 28-34. https://doi.org/10.1016/j.hydromet.2009.11.009
- He Z, Yin Z, Wang X, Zhong H, Sun W. 2012. Microbial community changes during the process of pyrite bioleaching. Hydrometallurgy 125-126: 81-89. https://doi.org/10.1016/j.hydromet.2012.05.010
- Holmes PR, Crundwell FK. 2000. The kinetics of the oxidation of pyrite by ferric ions and dissolved oxygen: an electrochemical study. Geochim. Cosmochim. Acta 64: 263-274. https://doi.org/10.1016/S0016-7037(99)00296-3
- Iglesias N, Carranza F. 1996. Treatment of a gold bearing arsenopyrite concentrate by ferric sulphate leaching. Miner. Eng. 9: 317-330. https://doi.org/10.1016/0892-6875(96)00016-7
- Kaksonen AH, Perrot F, Morris C, Rea S, Benvie B, Austin P, Hackl R. 2014. Evaluation of submerged bio-oxidation concept for refractory gold ores. Hydrometallurgy 141: 117-125. https://doi.org/10.1016/j.hydromet.2013.10.012
- Karamanev D, Nikolov L, Mamatarkova V. 2002. Rapid simultaneous quantitative determination of ferric and ferrous ions in drainage waters and similar solutions. Miner. Eng. 15: 341-346. https://doi.org/10.1016/S0892-6875(02)00026-2
- Li Q, Li D, Qian F. 2009. Pre-oxidation of high-sulfur and high-arsenic refractory gold concentrate by ozone and ferric ions in acidic media. Hydrometallurgy 97: 61-66. https://doi.org/10.1016/j.hydromet.2009.01.002
-
Liu H, Yin H, Dai Y, Dai Z, Liu Y, Li Q, et al. 2011. The co-coculture of Acidithiobacillus ferrooxidans and Acidiphilium acidophilum enhances the growth, iron oxidation, and
$CO_2$ fixation. Arch. Microbiol. 193: 857-866. https://doi.org/10.1007/s00203-011-0723-8 - Ma S, Luo W, Mo W, Su X, Liu P, Yang J. 2010. Removal of arsenic and sulfur from a refractory gold concentrate by microwave heating. Miner. Eng. 23: 61-63. https://doi.org/10.1016/j.mineng.2009.09.018
- Mikkelsen D, Kappler U, Webb RI, Rasch R, Mcewan AG, Sly LI. 2007. Visualisation of pyrite leaching by selected thermophilic archaea: nature of microorganism-ore interactions during bioleaching. Hydrometallurgy 88: 143-153. https://doi.org/10.1016/j.hydromet.2007.02.013
- Muravyov MI, Bulaev AG. 2013. Two-step oxidation of a refractory gold-bearing sulfidic concentrate and the effect of organic nutrients on its biooxidation. Miner. Eng. 45: 108-114. https://doi.org/10.1016/j.mineng.2013.02.007
- Nemati M, Harrison STL. 1999. Effects of solid particles on thermophilic bioleaching of sulphide minerals. Process Metall. 9: 473-482.
- Nemati M, Harrison STL. 2000. Effect of solid loading on thermophilic bioleaching of sulfide minerals. J. Chem. Technol. Biotechnol. 75: 526-532. https://doi.org/10.1002/1097-4660(200007)75:7<526::AID-JCTB249>3.0.CO;2-4
- Nicol M, Miki H, Basson P. 2013. The effects of sulphate ions and temperature on the leaching of pyrite. 2. Dissolution rates. Hydrometallurgy 133: 182-187. https://doi.org/10.1016/j.hydromet.2013.01.009
- Okibe N, Johnson DB. 2004. Biooxidation of pyrite by defined mixed cultures of moderately thermophilic acidophiles in pH-controlled bioreactors: significance of microbial interactions. Biotechnol. Bioeng. 87: 574-583. https://doi.org/10.1002/bit.20138
- Rawlings DE. 2002. Heavy metal mining using microbes 1. Annu. Rev. Microbiol. 56: 65-91. https://doi.org/10.1146/annurev.micro.56.012302.161052
- Rawlings DE. 2005. Characteristics and adaptability of ironand sulfur-oxidizing microorganisms used for the recovery of metals from minerals and their concentrates. Microb. Cell Fact. 4: 54-56.
- Rawlings DE, Dew D, du Plessis C. 2003. Biomineralization of metal-containing ores and concentrates. Trends Biotechnol. 21: 38-44. https://doi.org/10.1016/S0167-7799(02)00004-5
- Rohwerder T, Gehrke T, Kinzler K, Sand W. 2003. Bioleaching review part A: progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation. Appl. Microbiol. Biotechnol. 63: 239-248. https://doi.org/10.1007/s00253-003-1448-7
- Sandström Å, Petersson S. 1997. Bioleaching of a complex sulphide ore with moderate thermophilic and extreme thermophilic microorganisms. Hydrometallurgy 46: 181-190. https://doi.org/10.1016/S0304-386X(97)00012-1
- Shiers D, Ralph D, Watling H. 2010. A comparative study of substrate utilisation by Sulfobacillus species in mixed ferrous ion and tetrathionate growth medium. Hydrometallurgy 104: 363-369. https://doi.org/10.1016/j.hydromet.2010.03.023
- Xia JL, Yang Y , He H , Zhao X J, Liang CL, Zheng L , et al. 2010. Surface analysis of sulfur speciation on pyrite bioleached by extreme thermophile Acidianus manzaensis using Raman and XANES spectroscopy. Hydrometallurgy 100: 129-135. https://doi.org/10.1016/j.hydromet.2009.11.001
-
Zhong SP. 2015. Leaching kinetics of gold bearing pyrite in
$H_2SO_4-Fe_2(SO4)_3$ system. Trans. Nonferrous Metals Soc. China 25: 3461-3466. https://doi.org/10.1016/S1003-6326(15)63983-8
Cited by
- Optimizing the alkaline oxidation pretreatment of a refractory gold ore using taguchi orthogonal array method vol.5, pp.12, 2016, https://doi.org/10.1088/2053-1591/aae196
- Two-step processing of refractory gold-containing sulfidic concentrate via biooxidation at two temperatures vol.73, pp.1, 2016, https://doi.org/10.1007/s11696-018-0562-z