DOI QR코드

DOI QR Code

Cloning and Characterization of the IgA Fc Receptor from Swine

  • Chen, Yumei (Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences) ;
  • Liu, Yunchao (Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences) ;
  • Zhang, Gaiping (Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences) ;
  • Feng, Hua (Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences) ;
  • Ji, Pengchao (Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences) ;
  • Wang, Guoqiang (Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences) ;
  • Liu, Chang (Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences) ;
  • Song, Yapeng (Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences) ;
  • Su, Yunfang (Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences) ;
  • Qiao, Songlin ;
  • Wang, Aiping (School of Life Sciences, Zhengzhou University)
  • Received : 2016.07.05
  • Accepted : 2016.08.25
  • Published : 2016.12.28

Abstract

The myeloid-specific IgA Fc receptor ($Fc{\alpha}R$) is a cell surface molecule on immunocytes that provides a fundamental connection between humoral and cellular immunity. In this study, the full-length cDNA sequence of swine $Fc{\alpha}RI$ ($swFc{\alpha}RI$) was isolated and characterized and found to contain a 792-base-pair open reading frame, encoding a 264-amino-acid transmembrane glycoprotein with a predicted molecular mass of 29.4 kDa. The $swFc{\alpha}RI$ shares high amino acid sequence homology (>50%) with its counterparts from cattle, seal, and horse. Rosetting analysis confirmed that COS-7 cells transfected with an $swFc{\alpha}RI$ expression plasmid was able to combine with chicken erythrocytes sensitized with porcine IgA, but not IgG.

Keywords

References

  1. Arnold K, Bordoli L, Kopp JT. 2006. The SWISS-MODEL workspace: a Web-based environment for protein structure homology modelling. Bioinformatics 22: 195-201. https://doi.org/10.1093/bioinformatics/bti770
  2. Getahun A, Cambier JC. 2015. Of ITIMs, ITAMs, and ITAMis: revisiting immunoglobulin Fc receptor signaling. Immunol. Rev. 268: 66-73. https://doi.org/10.1111/imr.12336
  3. Herr AB, Ballister ER, Bjorkman PJ. 2003. Insights into IgAmediated immune responses from the crystal structures of human FcalphaRI and its complex with IgA1-Fc. Nature 423: 614-620. https://doi.org/10.1038/nature01685
  4. Liu Y, Qiao S, Wang A, Chang J, Chen Y, Yang S, et al. 2011. Cloning and characterization of ovine immunoglobulin G Fc receptor III (FcgammaRIII). Vet. Immunol. Immunopathol. 139: 282-288. https://doi.org/10.1016/j.vetimm.2010.10.002
  5. Liu Y, Wang A, Qiao S, Zhang G, Xi J, You L, et al. 2010. Cloning and characterization of ovine immunoglobulin G Fc receptor II (FcgammaRII). Vet. Immunol. Immunopathol. 133: 243-249. https://doi.org/10.1016/j.vetimm.2009.07.020
  6. Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(delta delta C(T)) method. Methods 25: 402-408. https://doi.org/10.1006/meth.2001.1262
  7. Maliszewski CR, March CJ, Schoenborn MA, Gimpel S, Shen L. 1990. Expression cloning of a human Fc receptor for IgA. J. Exp. Med. 172: 1665-1672. https://doi.org/10.1084/jem.172.6.1665
  8. Marchler-Bauer A, Derbyshire MK, Gonzales NR, Lu S, Chitsaz F, Geer LY, et al. 2015. CDD: NCBI's conserved domain database. Nucleic Acids Res. 43: 222-226. https://doi.org/10.1093/nar/gku1221
  9. Mkaddem SB, Christou I, Rossato E, Berthelot L, Lehuen A, Monteiro RC. 2014. IgA, IgA receptors, and their antiinflammatory properties. Curr. Top. Microbiol. Immunol. 382: 221-235.
  10. Monteiro RC. 2010. Role of IgA and IgA Fc receptors in inflammation. J. Clin. Immunol. 30: 1-9.
  11. Monteiro RC, Van De Winkel JG. 2003. IgA Fc receptors. Annu. Rev. Immunol. 21: 177-204. https://doi.org/10.1146/annurev.immunol.21.120601.141011
  12. Morton HC, Pleass RJ, Storset AK, Brandtzaeg P, Woof JM. 2005. Cloning and characterization of equine CD89 and identification of the CD89 gene in chimpanzees and rhesus macaques. Immunology 115: 74-84. https://doi.org/10.1111/j.1365-2567.2005.02129.x
  13. Morton HC, Pleass RJ, Storset AK, Dissen E, Williams JL, Brandtzaeg P, Woof JM. 2004. Cloning and characterization of an immunoglobulin A Fc receptor from cattle. Immunology 111: 204-211. https://doi.org/10.1111/j.0019-2805.2003.01808.x
  14. Rogers KA, Jayashankar L, Scinicariello F, Attanasio R. 2008. Nonhuman primate IgA: genetic heterogeneity and interactions with CD89. J. Immunol. 180: 4816-4824. https://doi.org/10.4049/jimmunol.180.7.4816
  15. Rogers KA, Scinicariello F, Attanasio R. 2004. Identification and characterization of macaque CD89 (immunoglobulin A Fc receptor). Immunology 113: 178-186. https://doi.org/10.1111/j.1365-2567.2004.01949.x
  16. Saif LJ, Bohl EH, Gupta RK. 1972. Isolation of porcine immunoglobulins and determination of the immunoglobulin classes of transmissible gastroenteritis viral antibodies. Infect. Immun. 6: 600-609.
  17. Smura T, Blomqvist S, Vuorinen T, Ivanova O, Samoilovich E, Al-Hello H, et al. 2014. Recombination in the evolution of enterovirus C species sub-group that contains types CVA21, CVA-24, EV-C95, EV-C96, and EV-C99. PLoS One 9: e94579. https://doi.org/10.1371/journal.pone.0094579
  18. Wehrli M, Cortinas-Elizondo F, Hlushchuk R, Daudel F, Villiger PM, Miescher S, et al. 2014. Human IgA Fc receptor FcalphaRI (CD89) triggers different forms of neutrophil death depending on the inflammatory microenvironment. J. Immunol. 193: 5649-5659. https://doi.org/10.4049/jimmunol.1400028
  19. Xue J, Zhao Q, Zhu L, Zhang W. 2010. Deglycosylation of FcalphaR at N58 increases its binding to IgA. Glycobiology 20: 905-915. https://doi.org/10.1093/glycob/cwq048