References
- Chae KJ, Choi M, Ajayi FF, Park W, Chang IS, Kim IS. 2007. Mass transport through a proton exchange membrane (nafion) in microbial fuel cells. Energy Fuels 22: 169-176.
- Chae KJ, Choi MJ, Lee JW, Kim KY, Kim IS. 2009. Effect of different substrates on the performance, bacterial diversity, and bacterial viability in microbial fuel cells. Bioresour. Technol. 100: 3518-3525. https://doi.org/10.1016/j.biortech.2009.02.065
- Chang I-S, Moon H-S, Bretschger O, Jang J-K, Park H-I, Nealson KH, Kim B-H. 2006. Electrochemically active bacteria (EAB) and mediator-less microbial fuel cells. J. Microbiol. Biotechnol. 16: 163-177.
- Choi M-J, Chae K-J, Ajayi FF, Kim K-Y, Yu H-W, Kim C-W, Kim IS. 2011. Effects of biofouling on ion transport through cation exchange membranes and microbial fuel cell performance. Bioresour. Technol. 102: 298-303. https://doi.org/10.1016/j.biortech.2010.06.129
- Choi S, Kim JR, Cha J, Kim Y, Premier GC, Kim C. 2013. Enhanced power production of a membrane electrode assembly microbial fuel cell (MFC) using a cost effective poly [2, 5-benzimidazole](ABPBI) impregnated non-woven fabric filter. Bioresour. Technol. 128: 14-21. https://doi.org/10.1016/j.biortech.2012.10.013
- Christgen B, Scott K, Dolfing J, Head IM, Curtis TP. 2015. An evaluation of the performance and economics of membranes and separators in single chamber microbial fuel cells treating domestic wastewater. PLoS One 10: e0136108. https://doi.org/10.1371/journal.pone.0136108
- Daud SM, Kim BH, Ghasemi M, Daud WRW. 2015. Separators used in microbial electrochemical technologies: current status and future prospects. Bioresour. Technol. 195: 170-179. https://doi.org/10.1016/j.biortech.2015.06.105
- Fan Y, Sharbrough E, Liu H. 2008. Quantification of the internal resistance distribution of microbial fuel cells. Environ. Sci. Technol. 42: 8101-8107. https://doi.org/10.1021/es801229j
- Ghasemi M, Daud WRW, Ismail AF, Jafari Y, Ismail M, Mayahi A, Othman J. 2013. Simultaneous wastewater treatment and electricity generation by microbial fuel cell: performance comparison and cost investigation of using Nafion 117 and SPEEK as separators. Desalination 325: 1-6. https://doi.org/10.1016/j.desal.2013.06.013
- Jang JK, Kim KM, Byun S, Ryou YS, Chang IS, Kang YK, Kim YH. 2014. Current generation from microbial fuel cell using stainless steel wire as anode electrode. J. Kor. Soc. Environ. Eng. 36: 753-757. https://doi.org/10.4491/KSEE.2014.36.11.753
- Jang JK, Moon HS, Chang IS, Kim BH. 2005. Improved performance of microbial fuel cell using membrane-electrode assembly. J. Microbiol. Biotechnol. 15: 438-441.
- Kim D, Chang IS. 2009. Electricity generation from synthesis gas by microbial processes: CO fermentation and microbial fuel cell technology. Bioresour. Technol. 100: 4527-4530. https://doi.org/10.1016/j.biortech.2009.04.017
- Kim JR, Cheng S, Oh S-E, Logan BE. 2007. Power generation using different cation, anion, and ultrafiltration membranes in microbial fuel cells. Environ. Sci. Technol. 41: 1004-1009. https://doi.org/10.1021/es062202m
- Kim T, An J, Jang JK, Chang IS. 2015. Coupling of anaerobic digester and microbial fuel cell for COD removal and ammonia recovery. Bioresour. Technol. 195: 217-222. https://doi.org/10.1016/j.biortech.2015.06.009
- Kim T, An J, Lee H, Jang JK, Chang IS. 2016. pH-dependent ammonia removal pathways in microbial fuel cell system. Bioresour. Technol. 215: 290-295. https://doi.org/10.1016/j.biortech.2016.03.167
- Kondaveeti S, Lee J, Kakarla R, Kim HS, Min B. 2014. Lowcost separators for enhanced power production and field application of microbial fuel cells (MFCs). Electrochim. Acta 132: 434-440. https://doi.org/10.1016/j.electacta.2014.03.046
- Li W-W, Sheng G-P, Liu X-W, Yu H-Q. 2011. Recent advances in the separators for microbial fuel cells. Bioresour. Technol. 102: 244-252. https://doi.org/10.1016/j.biortech.2010.03.090
- Liu H, Cheng S, Logan BE. 2005. Power generation in fedbatch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration. Environ. Sci. Technol. 39: 5488-5493. https://doi.org/10.1021/es050316c
- Liu H, Logan BE. 2004. Electricity generation using an aircathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environ. Sci. Technol. 38: 4040-4046. https://doi.org/10.1021/es0499344
- Liu H, Logan BE. 2004. Electricity generation using an aircathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environ. Sci. Technol. 38: 4040-4046. https://doi.org/10.1021/es0499344
- Liu H, Ramnarayanan R, Logan BE. 2004. Production of electricity during wastewater treatment using a single chamber microbial fuel cell. Environ. Sci. Technol. 38: 2281-2285. https://doi.org/10.1021/es034923g
- Min B, Cheng S, Logan BE. 2005. Electricity generation using membrane and salt bridge microbial fuel cells. Water Res. 39: 1675-1686. https://doi.org/10.1016/j.watres.2005.02.002
- Oh S, Min B, Logan BE. 2004. Cathode performance as a factor in electricity generation in microbial fuel cells. Environ. Sci. Technol. 38: 4900-4904. https://doi.org/10.1021/es049422p
- Rozendal RA, Hamelers HV, Buisman CJ. 2006. Effects of membrane cation transport on pH and microbial fuel cell performance. Environ. Sci. Technol. 40: 5206-5211. https://doi.org/10.1021/es060387r
- Xu J, Sheng G-P, Luo H-W, Li W-W, Wang L-F, Yu H-Q. 2012. Fouling of proton exchange membrane (PEM) deteriorates the performance of microbial fuel cell. Water Res. 46: 1817-1824. https://doi.org/10.1016/j.watres.2011.12.060
- Zhang X, Cheng S, Huang X, Logan BE. 2010. Improved performance of single-chamber microbial fuel cells through control of membrane deformation. Biosens. Bioelectron. 25: 1825-1828. https://doi.org/10.1016/j.bios.2009.11.018
- Zhang X, Cheng S, Wang X, Huang X, Logan BE. 2009. Separator characteristics for increasing performance of microbial fuel cells. Environ. Sci. Technol. 43: 8456-8461. https://doi.org/10.1021/es901631p
Cited by
- Assessment of organic removal in series- and parallel-connected microbial fuel cell stacks vol.22, pp.6, 2016, https://doi.org/10.1007/s12257-017-0378-7
- Living Architecture: Toward Energy Generating Buildings Powered by Microbial Fuel Cells vol.7, pp.None, 2016, https://doi.org/10.3389/fenrg.2019.00094
- A study on development of alternative biopolymers based proton exchange membrane for microbial fuel cells and effect of blending ratio and ionic crosslinking on bioenergy generation and COD removal vol.26, pp.12, 2016, https://doi.org/10.1007/s10965-019-1957-4
- Marketability Prospects of Microbial Fuel Cells for Sustainable Energy Generation vol.34, pp.8, 2016, https://doi.org/10.1021/acs.energyfuels.0c01766
- Optimization of microbial fuel cell process using a novel consortium for aromatic hydrocarbon bioremediation and bioelectricity generation vol.298, pp.None, 2016, https://doi.org/10.1016/j.jenvman.2021.113546