DOI QR코드

DOI QR Code

Genome Sequence of Bacillus cereus FORC_021, a Food-Borne Pathogen Isolated from a Knife at a Sashimi Restaurant

  • Chung, Han Young (Department of Agricultural Biotechnology, Center for Food Safety and Toxicology, Seoul National University) ;
  • Lee, Kyu-Ho (Department of Life Science, Sogang University) ;
  • Ryu, Sangryeol (Department of Agricultural Biotechnology, Center for Food Safety and Toxicology, Seoul National University) ;
  • Yoon, Hyunjin (Department of Applied Chemistry and Biological Engineering, Ajou University) ;
  • Lee, Ju-Hoon (Department of Food Science and Biotechnology, Kyung Hee University) ;
  • Kim, Hyeun Bum (Department of Animal Resources Science, Dankook University) ;
  • Kim, Heebal (Department of Animal Science and Biotechnology, Seoul National University) ;
  • Jeong, Hee Gon (Department of Food Science and Technology, Chungnam National University) ;
  • Choi, Sang Ho (Department of Agricultural Biotechnology, Center for Food Safety and Toxicology, Seoul National University) ;
  • Kim, Bong-Soo (Department of Life Science, Hallym University)
  • Received : 2016.06.29
  • Accepted : 2016.08.15
  • Published : 2016.12.28

Abstract

Bacillus cereus causes food-borne illness through contaminated foods; therefore, its pathogenicity and genome sequences have been analyzed in several studies. We sequenced and analyzed B. cereus strain FORC_021 isolated from a sashimi restaurant. The genome sequence consists of 5,373,294 bp with 35.36% GC contents, 5,350 predicted CDSs, 42 rRNA genes, and 107 tRNA genes. Based on in silico DNA-DNA hybridization values, B. cereus ATCC $14579^T$ was closest to FORC_021 among the complete genome-sequenced strains. Three major enterotoxins were detected in FORC_021. Comparative genomic analysis of FORC_021 with ATCC $14579^T$ revealed that FORC_021 harbored an additional genomic region encoding virulence factors, such as putative ADP-ribosylating toxin, spore germination protein, internalin, and sortase. Furthermore, in vitro cytotoxicity testing showed that FORC_021 exhibited a high level of cytotoxicity toward INT-407 human epithelial cells. This genomic information of FORC_021 will help us to understand its pathogenesis and assist in managing food contamination.

Keywords

References

  1. Andersson A, Ronner U, Granum PE. 1995. What problems does the food industry have with the spore-forming pathogens Bacillus cereus and Clostridium perfringens? Int. J. Food Microbiol. 28: 145-155. https://doi.org/10.1016/0168-1605(95)00053-4
  2. Ash C, Farrow JA, Dorsch M, Stackebrandt E, Collins MD. 1991. Comparative analysis of Bacillus anthracis, Bacillus cereus, and related species on the basis of reverse transcriptase sequencing of 16S rRNA. Int. J. Syst. Bacteriol. 41: 343-346. https://doi.org/10.1099/00207713-41-3-343
  3. Bohm ME, Huptas C, Krey VM, Scherer S. 2015. Massive horizontal gene transfer, strictly vertical inheritance and ancient duplications differentially shape the evolution of Bacillus cereus enterotoxin operons hbl, cytK and nhe. BMC Evol. Biol. 15: 246. https://doi.org/10.1186/s12862-015-0529-4
  4. Ceuppens S, Uyttendaele M, Drieskens K, Heyndrickx M, Rajkovic A, Boon N, Van de Wiele T. 2012. Survival and germination of Bacillus cereus spores without outgrowth or enterotoxin production during in vitro simulation of gastrointestinal transit. Appl. Environ. Microbiol. 78: 7698-7705. https://doi.org/10.1128/AEM.02142-12
  5. Cascioferro S, Totsika M, Schillaci D. 2014. Sortase A: an ideal target for anti-virulence drug development. Microb. Pathog. 77: 105-112. https://doi.org/10.1016/j.micpath.2014.10.007
  6. Delcher AL, Bratke KA, Powers EC, Salzberg SL. 2007. Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics 23: 673-679. https://doi.org/10.1093/bioinformatics/btm009
  7. Disz T, Akhter S, Cuevas D, Olson R, Overbeek R, Vonstein V, et al. 2010. Accessing the SEED genome databases via Web services API: tools for programmers. BMC Bioinformatics 11: 319. https://doi.org/10.1186/1471-2105-11-319
  8. Doll VM, Ehling-Schulz M, Vogelmann R. 2013. Concerted action of sphingomyelinase and non-hemolytic enterotoxin in pathogenic Bacillus cereus. PLoS One 8: e61404. https://doi.org/10.1371/journal.pone.0061404
  9. Drobniewski FA. 1993. Bacillus cereus and related species. Clin. Microbiol. Rev. 6: 324-338. https://doi.org/10.1128/CMR.6.4.324
  10. Frankland GC, Frankland PF. 1887. Studies on some new micro-organisms obtained from air. Phil. Trans. R. Soc. Lond., B Biol. Sci. 178: 257-287. https://doi.org/10.1098/rstb.1887.0011
  11. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P, Tiedje JM. 2007. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int. J. Syst. Evol. Microbiol. 57: 81-91. https://doi.org/10.1099/ijs.0.64483-0
  12. Guinebretiere MH, Thompson FL, Sorokin A, Normand P, Dawyndt P, Ehling-Schulz M, et al. 2008. Ecological diversification in the Bacillus cereus group. Environ. Microbiol. 10: 851-865. https://doi.org/10.1111/j.1462-2920.2007.01495.x
  13. Huerta-Cepas J, Szklarczyk D, Forslund K, Cook H, Heller D, Walter MC, et al. 2016. eggNOG 4.5: a hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences. Nucleic Acids Res. 44: D286-D293. https://doi.org/10.1093/nar/gkv1248
  14. Institute JCV. Available from http://gcid.jcvi.org/projects/ msc/bacillus/bacillus_cereus_b4264/index.shtml. Accessed February 27, 2016.
  15. Ivanova N, Sorokin A, Anderson I, Galleron N, Candelon B, Kapatral V, et al. 2003. Genome sequence of Bacillus cereus and comparative analysis with Bacillus anthracis. Nature 423: 87-91. https://doi.org/10.1038/nature01582
  16. Jessberger N, Krey VM, Rademacher C, Bohm ME, Mohr AK, Ehling-Schulz M, et al. 2015. From genome to toxicity: a combinatory approach highlights the complexity of enterotoxin production in Bacillus cereus. Front. Microbiol. 6: 560.
  17. Kim M, Oh HS, Park SC, Chun J. 2014. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int. J. Syst. Evol. Microbiol. 64: 346-351. https://doi.org/10.1099/ijs.0.059774-0
  18. Kim S, Bang YJ, Kim D, Lim JG, Oh MH, Choi SH. 2014. Distinct characteristics of OxyR2, a new OxyR-type regulator, ensuring expression of peroxiredoxin 2 detoxifying low levels of hydrogen peroxide in Vibrio vulnificus. Mol. Microbiol. 93: 992-1009. https://doi.org/10.1111/mmi.12712
  19. Ku HJ, Lee JH. 2014. Development of a novel long-range 16S rRNA universal primer set for metagenomic analysis of gastrointestinal microbiota in newborn infants. J. Microbiol. Biotechnol. 24: 812-822. https://doi.org/10.4014/jmb.1403.03032
  20. Lee DH, Kim HR, Chung HY, Lim JG, Kim S, Kim SK, et al. 2015. Complete genome sequence of Bacillus cereus FORC_005, a food-borne pathogen from the soy sauce braised fish-cake with quail-egg. Stand. Genomic Sci. 10: 97. https://doi.org/10.1186/s40793-015-0094-x
  21. Mahler H, Pasi A, Kramer JM, Schulte P, Scoging AC, Bar W, Krahenbuhl S. 1997. Fulminant liver failure in association with the emetic toxin of Bacillus cereus. N. Engl. J. Med. 336: 1142-1148. https://doi.org/10.1056/NEJM199704173361604
  22. Schoeni JL, Wong AC. 2005. Bacillus cereus food poisoning and its toxins. J. Food Prot. 68: 636-648. https://doi.org/10.4315/0362-028X-68.3.636
  23. Simon NC, Barbieri JT. 2014. Bacillus cereus Certhrax ADPribosylates vinculin to disrupt focal adhesion complexes and cell adhesion. J. Biol. Chem. 289: 10650-10659. https://doi.org/10.1074/jbc.M113.500710
  24. Takeno A, Okamoto A, Tori K, Oshima K, Hirakawa H, Toh H, et al. 2012. Complete genome sequence of Bacillus cereus NC7401, which produces high levels of the emetic toxin cereulide. J. Bacteriol. 194: 4767-4768. https://doi.org/10.1128/JB.01015-12
  25. Thompson CC, Chimetto L, Edwards RA, Swings J, Stackebrandt E, Thompson FL. 2013. Microbial genomic taxonomy. BMC Genomics 14: 913. https://doi.org/10.1186/1471-2164-14-913
  26. UniProt C. 2011. Ongoing and future developments at the Universal Protein Resource. Nucleic Acids Res. 39: D214-D219. https://doi.org/10.1093/nar/gkq1020
  27. Vazquez-Boland JA, Dominguez-Bernal G, Gonzalez-Zorn B, Kreft J, Goebel W. 2001. Pathogenicity islands and virulence evolution in Listeria. Microbes Infect. 3: 571-584. https://doi.org/10.1016/S1286-4579(01)01413-7
  28. Wijman JG, de Leeuw PP, Moezelaar R, Zwietering MH, Abee T. 2007. Air-liquid interface biofilms of Bacillus cereus: formation, sporulation, and dispersion. Appl. Environ. Microbiol. 73: 1481-1488. https://doi.org/10.1128/AEM.01781-06