DOI QR코드

DOI QR Code

Characterization of extracellular protease from Pseudoxanthomonas sp. WD12 and WD32

Pseudoxanthomonas sp. WD12와 WD32의 세포외 단백질분해효소 특성

  • Cho, Woon-Dong (Department of Microbiology, Chungbuk National University) ;
  • Oh, Ji-Sung (Department of Microbiology, Chungbuk National University) ;
  • Roh, Dong-Hyun (Department of Microbiology, Chungbuk National University)
  • Received : 2016.05.23
  • Accepted : 2016.07.05
  • Published : 2016.12.31

Abstract

Proteolytic enzymes perform hydrolysis of the peptide bonds in the protein and most commonly use in the industry. Pseudoxanthomonas sp. WD12 and WD32 were previously isolated as protease producers from a rotten wood sample. Here, we report the secreted proteolytic enzymes. The optimum enzyme reaction temperature for the secreted crude enzyme from the strain WD12 and WD32 were $50^{\circ}C$ at pH 9.0 and $45^{\circ}C$ at pH 8.0, respectively. The enzyme activities of both strains were increased by addition of KCl, NaCl, $CaCl_2$ or $MnSO_4$, and decreased by addition of $AgNO_3$, $CuSO_4$, $FeCl_3$ or $AlCl_3$. Secreted enzymes of both strains were most strongly inhibited by addition of $FeCl_3$ or $CuSO_4$. Taken together these results, WD12 could be a candidate strain of industrial alkaline protease production.

단백질 분해효소는 단백질 내 아미노산의 펩티드 결합을 가수분해하며, 산업분야에서 가장 많이 사용되는 효소이다. 이전의 논문에서 부패한 나무로부터 Pseudoxanthomonas sp. WD12와 WD32를 분리하였다. 분비된 단백질 분해효소의 특성을 조사한 결과 WD12는 pH 9.0, $50^{\circ}C$, WD32의 경우 pH 8.0, $45^{\circ}C$에서 최적 활성을 나타내었다. 최적조건하에서 최고의 활성은 WD12는 768 unit/mL로 WD12의 활성이 WD32보다 2.6배 높았다. 금속 이온에 대한 분비효소 영향을 조사한 결과 두 균주 모두 KCl, NaCl, $CaCl_2$, $MnSO_4$를 첨가했을 때 활성이 증가하였으며, $AgNO_3$, $CuSO_4$, $FeCl_3$, $AlCl_3$를 첨가했을 때는 감소하였고, 최고의 활성은 $MnSO_4$의 첨가했을 때 두 균주 모두 활성 증가를 보인 반면 $FeCl_3$, $CuSO_4$는 활성저해를 보였다. 신종으로 생각되는 WD12 균주의 효소는 알칼리성 조건의 산업 환경에서 이용가능 하다고 생각된다.

Keywords

References

  1. Adrio JL, Demain AL (2014) Microbial enzymes: tools for biotechnological processes. Biomolecules 4: 117-139 https://doi.org/10.3390/biom4010117
  2. Bae M, Park PR (1989) Purification and characterization of thermotolerable alkaline protease by alkalophilic Bacillus sp. Kor J Microbiol Biotechnol 17: 545-551
  3. Cha IT, Lim HJ, Roh DH (2007) Isolation of Pseudoalteromonas sp. HJ47 from deep sea water of East Sea and characterization of its extracellular protease. Kor J Life Sci 17: 272-278 https://doi.org/10.5352/JLS.2007.17.2.272
  4. Cho WD, Lee JK, Lim CS, Park AR, Oh YS, Roh DH (2010) Isolation of Pseudoxanthomonas sp. WD12 and WD32 producing extracellular protease. Kor J Microbiol 46: 63-69
  5. Finkmann W, Altendorf K, Stackebrandt E, Lipski A (2000) Characterization of $N_2O$-producing Xanthomonas-like isolates from biofilters as Stenotrophomonas nitritireducens sp. nov., Luteimonas mephitis gen. nov., sp. nov. and Pseudoxanthomonas broegbernensis gen. nov., sp. nov. Int J Syst Evol Microbiol 50: 273-282 https://doi.org/10.1099/00207713-50-1-273
  6. Gupta R, Beg QK, Khan S, Lorenz P (2002) Bacterial alkaline protease: molecular approaches and industrial applications. Appl Microbiol Biotechnol 59: 15-32 https://doi.org/10.1007/s00253-002-0975-y
  7. Hutadilok-Towatana N, Painupong A, Suntinanalert P (1999) Purification and characterization of an extracellular protease from alkaliphilic and thermophilic Bacillus sp. PS719. J Biosci Bioeng 87: 581-587 https://doi.org/10.1016/S1389-1723(99)80118-2
  8. Kalisz HM (1988) Microbial proteinases. Adv Biochem Eng/Biotechnol 36: 1-65
  9. Kang SC, Park SG, Choi MC (1998) Characterization of alkaline serine protease secreted from coryneform bacterium TU-19. J Microbiol Biotechnol 8: 639-644
  10. Khan F (2013) New microbial proteases in leather and detergent industries. Innov Res Chem 1: 1-6
  11. Kim SJ, Yoon JH, Lee MS, Kim JB (1997) Isolation and characterization of Bacillus cereus secreting proteases form Korean soybean paste. Kor J Microbiol 33: 136-141
  12. Kumar CG, Takagi H (1999) Microbial alkaline proteases: from a bioindustrial viewpoint. Biotechnol Adv 17: 561-594 https://doi.org/10.1016/S0734-9750(99)00027-0
  13. Lee YK, Oh JS, Roh DH (2013) Characterization of extracellular protease secreted from Chryseobacterium JK1. Kor J Microbiol 48: 48-51
  14. Li D, Pang H, Sun L, Fan J, Li Y, Zhang J (2014) Pseudoxanthomonas wuyuanensis sp. nov., isolated from saline-alkali soil. Int J Syst Evol Microbiol 64: 799-804 https://doi.org/10.1099/ijs.0.056796-0
  15. Oh JS, Choi YS, Roh DH (2015) Characterization and optimum production condition of extracellular protease form Pseudoalteromonas donghaensis HJ51. Kor J Microbiol 51: 75-80 https://doi.org/10.7845/kjm.2015.5012
  16. Ok M, Kim MS, Seo WS, Cha JY, Cho YS (2000) Characterization of extracellular protease of Bacillus sp. WRD-1 isolated from soil. Kor J Appl Microbiol Biotechnol 28: 329-333
  17. Rao MB, Tanksale AM, Ghatge MS, Deshpande VV (1998) Molecular and biotechnological aspects of microbial proteases. Microbiol Mol Biol Rev 62: 597-635
  18. Secades P, Guijarro JA (1999) Purification and characterization of an extracellular protease from the fish pathogen Yersinia ruckeri and effect of culture conditions of production. Appl Environ Microbiol 65: 3969-3975
  19. Shafee N, Aris SN, Rahman RZA, Basri M, Salleh AB (2005) Optimization of environmental and nutritional conditions for the production of alkaline protease by a newly isolated bacterium. Bacillus cereus strain 146. J Appl Sci Res 1: 1-8