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Abstract—We have investigated the channel mobility 
of AlGaN/GaN-on-Si recessed-metal-oxide-semicon- 
ductor-heterojunction field-effect transistors (recessed- 
MOS-HFET) with SiO2 gate oxide. Both field-effect 
mobility and effective mobility for the recessed-MOS 
channel region were extracted as a function of the 
effective transverse electric field. The maximum field 
effect mobility was 380 cm2/V·s near the threshold 
voltage. The effective channel mobility at the on-state 
bias condition was 115 cm2/V·s at which the effective 
transverse electric field was 340 kV/cm. The influence 
of the recessed-MOS region on the overall channel 
mobility of AlGaN/GaN recessed-MOS-HFETs was 
also investigated.    
 
Index Terms—AlGaN/GaN heterojunction field-effect 
transistor, SiO2, Mobility, Recessed gate, MOS-HFET    

I. INTRODUCTION 

Gallium nitride (GaN) is an attractive material for use 
in high-power switching applications due to its high 
breakdown field and fast switching capability [1-3]. The 
biggest technical challenge in GaN power switching 
devices is the difficulty to achieve normally-off 
characteristics because of the polarization induced high 
carrier density at AlGaN/GaN interface [4, 5]. One of 
common methods to achieve the normally-off 
characteristics is the recessed-MIS gate configuration 
where the AlGaN barrier layer under the MIS gate region 

was recessed either partially or completely [5-7]. 
Typically, the on-resistance values of recessed-MIS gate 
devices are much higher than that of conventional 
normally-on AlGaN/GaN HFETs due to the limited 
carrier density and lower channel mobility. When the 
AlGaN barrier layer is partially recessed maintaining a 
2DEG channel at the interface between AlGaN and GaN, 
it is difficult to achieve a high threshold voltage due to 
the high density of positive polarization charges at the 
AlGaN/GaN interface; threshold voltages reported for 
this type of device are typically lower than 1 V [8-10]. In 
addition, the remaining AlGaN layer thickness is only a 
few nm and thus the channel mobility will be influenced 
by scattering with MIS interface and fixed charges 
located very near the AlGaN/GaN 2DEG channel. Such 
mobility degradation becomes even worse when the 
AlGaN barrier layer is completely removed to ensure a 
high threshold voltage. In this case, the channel mobility 
will be significantly decreased due to the absence of 
2DEG channel and strong scattering effects with 
interface charges existing at the recessed MIS channel 
itself. While great efforts have been made to improve the 
channel mobility of AlGaN/GaN recessed-MIS devices 
[7, 11, 12], careful investigation on mobility 
characteristics have not been reported yet. In this work, 
we have investigated the channel mobility characteristics 
of normally-off AlGaN/GaN-on-Si recessed-MOS-
HFETs with SiO2 gate oxide. 

II. DEVICE FABRICATION 

AlGaN/GaN-on-Si epitaxial structure used in this 
work consisted of a 8 nm in-situ SiNx passivation layer, a 
3.6 nm GaN capping layer, a 23.7 nm Al0.23Ga0.77N 
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barrier layer, a 1 nm AlN spacer, a 490 nm i-GaN layer, 
and a 4.4 um GaN buffer layer on a Si (111) substrate. 
After solvent cleaning, recessed ohmic contacts [13] 
were formed using Cl2/BCl3 plasma etching followed by 
Ti/Al/Ni/Au (=20/120/25/50 nm) metal stack and rapid 
thermal annealing (RTA) at 800°C for 1 min in N2 
ambient. Both MESA isolation and gate recess were 
performed by Cl2/BCl3-based inductively coupled plasma 
reactive ion etch. The contact resistance measured after 
MESA isolation was 0.9 Ω·mm with the sheet resistance 
of 290 Ω/sq. A low power of 5 W was used for the gate 
recess to minimize the plasma induced damage and 
precisely control the etch depth. The AlGaN barrier layer 
was completely removed to ensure normally-off 
operation. After the sample was cleaned by solvent, a 
sacrificial oxidation process was carried out where the 
surface was oxidized by O2 plasma treatment and 
thereafter etched back using diluted HF (1:10) prior to 
gate oxide deposition. A 20 nm SiO2 gate oxide film was 
deposited using plasma enhanced chemical vapor 
deposition [14]. A Ni/Au (=20/200 nm) gate stack was 
deposited by e-beam evaporation. Finally, the post-
metallization-annealing was carried out at 400°C for 10 
min in O2 ambient to improve the interface conditions 
[13]. 

III. RESULTS AND DISCUSSION 

The current-voltage characteristics of a fabricated 
AlGaN/GaN recessed-MOS-HFET are shown in Fig. 1. 
The device had a source-to-gate distance of 3 μm, a 
recessed channel length of 2 μm, and a gate-to-drain 
distance of 12 μm. The recessed-MOS configuration 
resulted in a threshold voltage of > 2 V with negligible 
hysteresis. The ON/OFF current ratio was > 109. The 

subthreshold slope was 257 mV/dec from which the 
extracted interface state density was ~2.21 ´ 1012 cm-2·eV-1. 

A Fat FET device with a large channel length (100 ´ 
100 μm2) was used to investigate the mobility 
characteristics for the recessed-MOS channel. The 
capacitance-voltage characteristics were measured to 
estimate the doping concentration of the GaN region 
under the recessed-MOS channel and the accumulation 
charge density at the MOS interface between SiO2 and 
GaN as a function of the gate bias voltage. The bias 
dependent capacitance characteristics are shown in Fig. 2 
along with 1/C2 characteristics to derive the doping 
concentration of the recessed GaN layer. The derived 
doping concentration was ~6 ´ 1014 cm-3. The channel 
charge density with a gate voltage of VG for the 
accumulation MOS channel can be calculated by 
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where VTH is the threshold voltage and CG.MOS is the MOS 
gate capacitance. The calculated channel carrier density 
QG.n/e was 3.48 ´ 1012 cm-2 at the gate voltage of 8 V. 

The current-voltage characteristics of the same device 
were measured to extract the mobility. The field-effect 
mobility (μFE) can be derived from the transconductance 
(dID/dVG) whereas the effective mobility (μeff) is related 
to the drain conductance (dID/dVD) as follows [15]. 
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Fig. 1. Current-voltage characteristics of AlGaN/GaN-on-Si 
recessed-MOS-HFET. 
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Fig. 2. Capacitance (C) and 1/C2 versus gate bias voltage for a 
recessed-MOS-HFET. 
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where ID is the drain current, W is the channel width, L is 
the channel length, and VD is the drain bias voltage. 

The extracted μFE and μeff as a function of VG is shown 
in Fig. 3(a) along with the corresponding current-voltage 
characteristics. Both μFE and μeff values decreased with 
increasing VG because of the increased transverse electric 
field applied in the perpendicular direction from the 
channel. The maximum μFE was 380 cm2/V·s at VG = 3 V 
whereas the maximum μeff values were varied from 254 
to 357 cm2/V·s depending on how to define VTH values. It 
should be noted that the sharp decrease in mobility 
values near threshold indicates strong scattering effects at 
MOS interface [16]. The dependency of μeff on VTH at the 
gate bias voltage near the threshold condition was due to 
the different values of QG.n calculated with different VTH 
values. Such uncertainty, however, disappeared when VG 
was sufficiently higher than VTH. We selected the on-state 
gate bias voltage of 8 V from the gate oxide reliability 
point of view. It should be noted that μeff was higher than 
μFE at the on-state condition (μFE = 80 cm2/V·s and μeff = 
115 cm2/V·s at VG = 8 V). While μFE is for simpler 
interpretation of experimental data that can be derived 
without knowing the threshold voltage, μeff would give 
more accurate prediction for current-voltage relationship 
[15, 17]. Therefore, attention should be paid more to μeff 
at the on-state condition than μFE near the threshold 
voltage. In order to investigate the effects of transverse 
electric field on effective mobility degradation, the 
effective transverse electric field (Eeff) was calculated by 
[15] 
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where εs is the permittivity of semiconductor (9.7 ´ 8.85 
´ 10-14 F/cm for GaN). Since the MOS channel between 
SiO2 and n-GaN is not an inversion channel but an 
accumulation channel, no depletion charge is considered 
to calculate the effective transverse electric field. The 
extracted mobilities versus effective transverse electric 
field are plotted in Fig. 3(b). 

A bulk mobility of ~1000 cm2/V·s at room temperature 
was reported for unintentionally doped GaN [18]. Main 
scattering mechanisms to account for the mobility 
behavior are phonon scattering due to lattice vibration, 
Coulomb scattering due to various charge centers 

including fixed oxide charges, interface charges, ionized 
impurity charges, etc, and surface roughness scattering. 
According to the empirical mobility model used for Si, 
the maximum mobility has a hyperbolic form as a 
function of substrate doping concentration and fixed 
oxide and interface charges [16]. It was reported that the 
fixed oxide and interface charges near the MOS interface 
have strong influence on mobility; for example, 
significant mobility degradation was observed in Si 
MOSFET as the charge density increased beyond ~1011 
cm-2 [15]. Based on Si empirical model, the mobility 
values extracted from AlGaN/GaN recessed-MOS-HFET 
are within reasonable range because of its relatively 
higher interface state density. According to the 
conductance method, the interface state density for the 
fabricated device was estimated to be low 1012 cm-2·eV-1, 
which is in agreement with the value extracted from 
subthreshold slope characteristics. Therefore, it is 
suggested that the significant degradation in mobility for 
AlGaN/GaN recessed-MOS-HFET in comparison with 
bulk GaN was largely attributed to Coulomb scattering. It 
is expected that the mobility of the recessed-MOS 
channel region will be comparable to the bulk GaN 
mobility if the interface state density is decreased below 
1011 cm-2·eV-1. 

Although the mobility of the recessed-MOS channel 
region is significantly lower than that of AlGaN/GaN 
heterojunctions, it should be noted that the recessed-
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Fig. 3. Field-effect and effective mobilities extracted from Fat
FET as a function of (a) gate bias voltage and (b) transverse 
electric field. 
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MOS channel region occupies only a small fraction of 
the source-to-drain distance of MOS-HFET and thus the 
influence on the overall mobility and on-resistance will 
be mitigated. The overall effective channel mobility μch 
between source and drain with the recessed-MOS gate 
can be expressed by 
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where μAlGaN/GaN and μMOS are the mobilities for 
AlGaN/GaN heterojunction and recessed-MOS channel, 
respectively, Lsd is the source-to-drain distance, Lrec is the 
recessed-MOS channel length, α is the ratio of the 
recessed-MOS channel mobility to AlGaN/GaN 
heterojunction mobility (μMOS/μAlGaN/GaN), and β is the 
ratio of the recessed-MOS channel length to the source-
to-drain distance (Lrec/Lsd). Decrease in overall channel 
mobility as functions of α and β is plotted in Fig. 4. For 
example, when α = β = 0.1, the overall channel mobility 
μch will be decreased by ~50%. If the recessed-MOS 
channel mobility were improved close to the bulk GaN 
mobility (~1000 cm2/V·s, i.e., α = ~0.5), the overall mobility 
will approach ~90% of AlGaN/GaN heterojunction 
mobility when β = 0.1. 

IV. CONCLUSIONS 

While a recessed-MOS gate configuration enables a 
high threshold voltage of AlGaN/GaN HFETs, the 
absence of 2DEG channel and scattering with fixed and 
interface charges near and at the MOS channel 
significantly degrade the recessed-MOS channel mobility. 

The mobility for the recessed-MOS channel with SiO2 
gate oxide was investigated as a function of transverse 
electric field. The maximum field-effect mobility was 
380 cm2/V·s near the threshold voltage and the effective 
mobility was 115 cm2/V·s at the on-state condition. Since 
the recessed-MOS channel mobility is a strong function 
of scattering centers existing near the channel, great care 
must be taken of processing technology to minimize the 
fixed and interface charges and the influence of the 
recessed-MOS channel mobility on the overall channel 
mobility of AlGaN/GaN MOS-HFET must be taken 
carefully into account for device modeling. 
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