DOI QR코드

DOI QR Code

Synthesis, Characterization and Photocatalytic Activity of Reduced Graphene Oxide-Ce/ZnO Composites

  • Zhang, Wenjun (School of Chemical Engineering and Technology, Hebei University of Technology) ;
  • Zhao, Jinfeng (School of Chemical Engineering and Technology, Hebei University of Technology) ;
  • Zou, Xuefeng (School of Chemical Engineering and Technology, Hebei University of Technology)
  • Received : 2015.01.13
  • Accepted : 2015.05.28
  • Published : 2016.02.01

Abstract

A series of Ce-doped ZnO (Ce/ZnO) nanostructures were fabricated using the co-precipitation method, then a simply nontoxic hydrothermal approach was proposed for preparation of reduced graphene oxide (rGO)-Ce/ZnO composites. The synthesized composites were investigated by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), photoluminescence spectroscopy (PL), electrochemical impedance spectroscopy (EIS), UV-vis diffuse reflectance spectroscopy (DRS) techniques and Raman pattern. The as-synthesized rGO-Ce/ZnO composites showed high photodecomposition efficiency in comparison with the rGO-ZnO, Ce/ZnO, pure ZnO under UV, visible-light and sunlight irradiation. The degradation of methylene blue (MB) (10 mg/L, 100ml) by 95.8% within 60 min by using rGO-2 (10 mg) under sunlight irradiation was observed. The repeated use of the rGO-2 was investigated, and the results showed almost no decay in the catalytic activity.

Keywords

References

  1. Kim, K. H. and Ihm, S. K., "Heterogeneous Catalytic Wet Air Oxidation of Refractory Organic Pollutants in Industrial Wastewaters: A Review," Hazard Mater., 186, 16-34(2011). https://doi.org/10.1016/j.jhazmat.2010.11.011
  2. Shi, Z. L., Du, C. and Yao, S. H., "Preparation and Photocatalytic Activity of Cerium Doped Anatase Titanium Dioxide Coated Magnetite Composite," J. Taiwan. Inst. Chem. E., 42, 652-657(2011). https://doi.org/10.1016/j.jtice.2010.10.001
  3. Lia, X. Y., Wang, J., Yang, J. H., Lang, J. H., Lu, S. Q., Wei, M. B., Meng, X. W., Kou, C. L. and Li, X. F., "Comparison of Photocatalytic Activity of ZnO Rod Arrays with Various Diameter Sizes and Orientation," J. Alloy. Compd., 580, 205-210(2013). https://doi.org/10.1016/j.jallcom.2013.05.037
  4. Liu, Y. M., Lv, H., Li, S. Q, Xing, X. Y. and Xi, G. X., "Preparation and Photocatalytic Property of Hexagonal Cylinder-like Bipods ZnO Microcrystal Photocatalyst," Dyes and Pigments., 95, 443-449(2012). https://doi.org/10.1016/j.dyepig.2012.05.027
  5. Linsebigler, A. L., Lu, G. Q. and Yates, J. T., "Photocatalysis on $TiO_2$ Surfaces: Principles, Mechanisms, and Selected Results," Chem. Rev., 95, 735-775(1995). https://doi.org/10.1021/cr00035a013
  6. Rezaei, M., Habibi-Yangjeh, A., "Microwave-assisted Preparation of Ce-doped ZnO Nanostructures as An Efficient Photocatalyst," Mater. Lett., 110, 53-56(2013). https://doi.org/10.1016/j.matlet.2013.07.120
  7. Ahmada, M., Ahmed, E., Hong, Z. L., Khalid, N. R., Ahmed, W. and Elhissi, A., "Graphene-Ag/ZnO Nanocomposites as High Performance Photocatalysts Under Visible Light Irradiation," J. Alloys. Compd., 577, 717-727(2013). https://doi.org/10.1016/j.jallcom.2013.06.137
  8. Thiruvenkatachari, R., Vigneswaran, S. abd Moon, S., "A Review on UV/$TiO_2$ Photocatalytic Oxidation Process," Korean J. Chem. Eng., 25(1), 64-72(2008). https://doi.org/10.1007/s11814-008-0011-8
  9. Farzadkia, M., Rahmani, K., Gholami, M., Esrafili, A., Rahmani, A. and Rahmani, H., "Investigation of Photocatalytic Degradation of Clindamycin Antibiotic by Using Nano-ZnO Catalysts," Korean J. Chem. Eng., 31(11), 2014-2019(2014). https://doi.org/10.1007/s11814-014-0119-y
  10. Navarro, S., Fenoll, J., Vela. N., Ruiz, E. and Navarro, G., "Photocatalytic Degradation of Eight Sticides in Leaching Water by Use of ZnO Under Natural Sunlight," J. Hazard. Mater., 172, 1303-1310(2009). https://doi.org/10.1016/j.jhazmat.2009.07.137
  11. Yu, J. G., Xiang, Q. J. and Zhou, M. H., "Preparation, Characterization and Visible-light-driven Photocatalytic Activity of Fe-doped Titania Nanorods and First-principles Study for Electronic Structures," Appl. Catal. B-Environ., 90, 595-602(2009). https://doi.org/10.1016/j.apcatb.2009.04.021
  12. Fu, H., Xu, T., Zhu, S. and Zhu, Y., "Photocorrosion Inhibition and Enhancement of Photocatalytic Activity for ZnO via Hybridization with $C_{60}$," Environ. Sci. Technol., 42, 8064-8069(2008). https://doi.org/10.1021/es801484x
  13. Chaudhari, S. P., Bodade, A. B., Chaudhari, and G. N., "Synthesis, Characterization and Photocatalytic Recital of Nest-like Zinc Oxide Photocatalyst," Korean J. Chem. Eng., 30(11), 2001-2006(2013). https://doi.org/10.1007/s11814-013-0151-3
  14. Li, Q., Li, H., Wang, R., Li, G., Yang, H. and Chen, R., J. Alloys Comp., 567, 1(2013). https://doi.org/10.1016/j.jallcom.2013.03.077
  15. Zong, Y. Q., Li, Z., Wang, X. M., Ma, J. T. and Men, Y., "Synthesis and High Photocatalytic Activity of Eu-doped ZnO Nanoparticles," Ceram. Int., 40, 10375-10382(2014). https://doi.org/10.1016/j.ceramint.2014.02.123
  16. Chang, C. J., Lin, C. Y. and Hsu, M. H., "Enhanced Photocatalytic Activity of Ce-doped ZnO Nanorods Under UV and Visible Light," J. Taiwan. Inst. Chem. E., 45, 1954-1963(2014). https://doi.org/10.1016/j.jtice.2014.03.008
  17. Ba-Abbad, M. M., Kadhum, A. A. H., Mohamad, A. B., Takriff, M. S. and Sopian, K., "Visible Light Photocatalytic Activity of $Fe^{3+}$-doped ZnO Nanoparticle Prepared via Sol-gel Technique," Chemosphere., 91, 1604-1611(2013). https://doi.org/10.1016/j.chemosphere.2012.12.055
  18. Zhang, X. L., Zhao, J. L., Wang, S. G., Dai, H. T. and Sun, X. W., "Shape-dependent Localized Surface Plasmon Enhanced Photocatalytic Effect of ZnO Nanorods Decorated with Ag," Int. J. Hydrogen. Energ., 39, 8238-8245(2014). https://doi.org/10.1016/j.ijhydene.2014.03.153
  19. Peng, F., Zhu, H. C., Wang, H. J. and Yu, H., "Preparation of Agsensitized ZnO and Its Photocatalytic Performance Under Simulated Solar Light," Korean J. Chem. Eng., 24(6), 1022-1026(2007). https://doi.org/10.1007/s11814-007-0114-7
  20. George, A., Sharma, S. K., Chawla, S., Malik, M. M. and Qureshi, M. S., "Detailed of X-raydiffraction and Photoluminescence Studies of Ce Doped ZnO Nanocrystals," J. Alloys. Compd., 509, 5942-5946(2011). https://doi.org/10.1016/j.jallcom.2011.03.017
  21. Ge, C., Xie, C. and Cai, S., "Preparation and Gas-sensing Properties of Ce-doped ZnO Thin-film Sensors by Dip-coating," Mater. Sci. Eng. B., 137, 53-58(2007). https://doi.org/10.1016/j.mseb.2006.10.006
  22. Ma, T. Y., Yuan, Z. Y. and Cao, J. L., "Hydrangea-like Meso-/macroporous ZnO-$CeO_2$ Binary Oxide Materials: Synthesis, Photocatalysis and CO Oxidation," Eur. J. Inorg. Chem., 5, 716-724(2010).
  23. Faisal, M., Khan, S. B., Rahman, M. M., Jamal, A., Akhtar, K. and Abdullah, M. M., "Role of ZnO-$CeO_2$ Nanostructures as a Photocatalyst and Chemisensor," J. Mater. Sci. Technol., 29, 594-600(2011).
  24. Du, F. L., Wang, N., Zhang, D. M. and Shen, Y. Z., "Preparation, Characterization and Infrared Emissivity Study of Ce-doped ZnO Films," J. Rare Earths., 28, 391-395(2010). https://doi.org/10.1016/S1002-0721(09)60118-6
  25. Karunakaran, C., Gomathisankar, P. and Manikandan, G., "Preparation and Characterization of Antimicrobial Ce-doped ZnO Nanoparticles for Photocatalytic Detoxification of Cyanide," Mater. Chem. Phys., 123, 585-594(2010). https://doi.org/10.1016/j.matchemphys.2010.05.019
  26. Ying, L. A., Liu, J., Mo, L., Lou, H. and Zheng, X., "Hydrogen Production by Oxidative Steam Reforming of Methanol Over $Ce_{1-x} Zn_xO_y$ Catalysts Prepared by Combustion Method," Int. J. Hydrogen Energy., 37, 1002-1006(2012). https://doi.org/10.1016/j.ijhydene.2011.03.054
  27. Yu, X. Q., Huo, Y. J., Yang, J., Chang, S. J., Ma, Y. S. and Huang, W. X., "Reduced Graphene Oxide Supported Au Nanoparticles as an Efficient Catalyst for Aerobic Oxidation of Benzyl Alcohol," Appl. Surf. Sci., 280, 450-455(2013). https://doi.org/10.1016/j.apsusc.2013.05.008
  28. Nguyen-Phan, T. D., Pham, V. H., Yun, H., Kim, E. J., Hur, S. H., Chung, J. S. and Shin, E. W., "Influence of Heat Treatment on Thermally-reduced Graphene Oxide/$TiO_2$ Composites for Photocatalytic Applications," Korean J. Chem. Eng., 28(12), 2236-2241(2011). https://doi.org/10.1007/s11814-011-0123-4
  29. Li, X. Q., Zhang, T. Y., Gu, S. W., Kang, S. Z., Li, G. D. and Mu,J., "Reduced GO/potassium Niobate Composite Nanoscrolls with Enhanced Photocatalytic Activity for Dye Degradation," Sep. Purif. Technol., 108, 139-142(2013). https://doi.org/10.1016/j.seppur.2013.02.018
  30. Xu, S. H., Fu, L., Song, T., Pham, H., Yu, A., Han, F. G. and Chen,L., "Preparation of ZnO Flower/reduced Graphene Oxide Composite with Enhanced Photocatalytic Performance Under Sunlight," Ceram. Int., 41, 4007-4013(2015). https://doi.org/10.1016/j.ceramint.2014.11.086
  31. Li, B. X., Liu, T. X., Wang, Y. F. and Wang, Z. F., "ZnO/grapheneoxide Nanocomposite with Remarkably Enhanced Visible-lightdriven Photocatalytic Performance," J. Colloid. Interf. Sci., 377, 114-121(2012). https://doi.org/10.1016/j.jcis.2012.03.060
  32. Liu, S. Z., Sun, H. Q., Suvorova, A. and Wang S. B., "One-potHydrothermal Synthesis of ZnO-reduced GO Composites Using Zn Powders for Enhanced Photocatalysis," Chem. Eng. J., 229, 533-539(2013). https://doi.org/10.1016/j.cej.2013.06.063
  33. Lv, T., Pan, L.K., Liu, X. J., Lu, T., Zhu, G. and Sun, Z., "EnhancedPhotocatalytic Degradation of Methylene Blue by ZnO-reduced Graphene Oxide Composite Synthesized via Microwave-assisted Reaction," J. Alloy. Compd., 509, 10086-10091(2011). https://doi.org/10.1016/j.jallcom.2011.08.045
  34. Ameen, S., Akhtar, M. S., Seo, H. K. and Shin, H. S., "Advanced ZnO-GO Nanohybrid and Its Photocatalytic Applications," Mater. Lett., 100, 261-265(2013). https://doi.org/10.1016/j.matlet.2013.03.012
  35. Zhou, X., Shi, T. J. and Zhou, H. O., "Hydrothermal Preparation of ZnO-reduced Graphene Oxide Hybrid with High Performance in Photocatalytic Degradation," Appl. Surf. Sci., 258, 6204-6211(2012). https://doi.org/10.1016/j.apsusc.2012.02.131
  36. Neppolian, B., Bruno, A. and Bianchi, C. L., "Muthupandian Ashokkumar. Graphene Oxide Based Pt-$TiO_2$ Photocatalyst: Ultrasound Assisted Synthesis, Characterization and Catalytic Efficiency, Characterization and Catalytic Efficiency," Ultrason. Sonochem., 19, 9-15(2012). https://doi.org/10.1016/j.ultsonch.2011.05.018
  37. Willam, S. Hummers, J. R. and Richarde, E., "Offema. Preparation of Graphitic Oxide," J. Am. Chem. Soc., 1339-1339(1958).
  38. Park, S., Lee, K. S., Bozoklu, G., Cai, W. W., Nguyen, S. T. and Ruoff, R. S., "Graphene Oxide Papers Modified by Divalent Ions-Enhancing Mechanical Properties via Chemical Cross-Linking," ACS Nano., 2, 572-578(2008). https://doi.org/10.1021/nn700349a
  39. Li, J., Zhou, S. L., Hong, G. B. and Chang, C. T., "Hydrothermal Preparation of P25-graphene Composite with Enhanced Adsorption and Photocatalytic Degradation of Dyes," ChE. Eng. J., 219, 486-491(2013). https://doi.org/10.1016/j.cej.2013.01.031
  40. Karunakaran, C., Gomathisankar, P. and Manikandan, G., "Preparation and Characterization of Antimicrobial Ce-doped ZnO Nanoparticles for Photocatalytic Detoxification of Cyanide," Mater. Chem. Phys., 123, 585-594(2010). https://doi.org/10.1016/j.matchemphys.2010.05.019
  41. Ahmad, M., Ahmed, E., Hong, Z. L., Khalid, N. R., Ahmed, W. and Elhissi, A., "Graphene-Ag/ZnO Nanocomposites as High Performance Photocatalysts Under Visible Light Irradiation," J. Alloys. Compd., 577, 717-727(2013). https://doi.org/10.1016/j.jallcom.2013.06.137
  42. Zhang, H., Lv, X. J., Li, Y. M., Wang, Y. and Li, J. H., P25-Graphene Composite as a High Performance Photocatalyst," ACS Nano., 4, 380-386(2010). https://doi.org/10.1021/nn901221k
  43. Bai, S. and Shen, X. P., "Graphene-inorganic Nanocomposites," RSC Advances., 2, 64-98(2012). https://doi.org/10.1039/C1RA00260K
  44. Liu, S., Tian, J. Q., Wang, L. and Sun, X. P., "A Method for the Production of Reduced Graphene Oxide Using Benzylamine as a Reducing and Stabilizing Agent and Its Subsequent Decoration with Ag Nanoparticles for Enzymeless Hydrogen Peroxide Detection," Carbon., 49, 3158-3164(2011). https://doi.org/10.1016/j.carbon.2011.03.036
  45. Ghasemia, S., Setayesh, S. R., Habibi-Yangjehb, A., Hormozi-Nezhad, M. R. and Gholami, M. R., "Assembly of $CeO_2$-$TiO_2$ Nanoparticles Prepared in Room Temperature Ionic Liquid on Graphene Nanosheets for Photocatalytic Degradation of Pollutants," J. Hazard. Mater., 199-200, 170-178(2012). https://doi.org/10.1016/j.jhazmat.2011.10.080
  46. Zhou, X., Shi, T. J. and Zhou, H. O., "Hydrothermal Preparation of ZnO-reduced Graphene Oxide Hybrid with High Performance in Photocatalytic Degradation," Appl. Surf. Sci., 258, 6204-6211(2012). https://doi.org/10.1016/j.apsusc.2012.02.131

Cited by

  1. N-doped ZnO/graphene oxide: a photostable photocatalyst for improved mineralization and photodegradation of organic dye under visible light pp.1862-0760, 2018, https://doi.org/10.1007/s11581-018-2571-x