DOI QR코드

DOI QR Code

Effect of Coating with the Mixture of PEDOT:PEG and Sulfuric Acid to Enhance Conductivity of Bacterial Cellulose Platform Film

박테리아 셀룰로오스 기반 전도성 막의 전도도 향상을 위한 PEDOT:PEG와 황산혼합액 코팅의 영향

  • Yim, Eun-Chae (Interdisciplinary program of graduate school for bioenergy and biomaterials, Chonnam National University) ;
  • Kim, Seong-Jun (Department of Environment and Energy engineering, Chonnam National University)
  • 임은채 (전남대학교 바이오에너지 및 바이오소재 협동과정) ;
  • 김성준 (전남대학교 환경공학과)
  • Received : 2015.04.02
  • Accepted : 2015.07.15
  • Published : 2016.02.01

Abstract

In this study, we tried to add the conductivity to natural polymer like bacterial cellulose (BC) coated with the conductive polymer PEDOT:PEG, graphene and silver nano-wire (AgNW). Sulfuric acid of 10 to 20% was previously mixed with PEDOT:PEG and then the solution was electron spin-coated on the BC membrane. And then, additive coating with graphene and AgNW were done to improve conductivity, which was examined by hall effect. As the result, we confirmed a considerable improvement of conductivity compared to BC-coated film without sulfuric acid treatment as $2.487{\times}10^{10}$ vs $8.093{\times}10^{15}$ ($1/cm^3$), showing higher electron density with $3.25{\times}10^5$ times. Also, we identified that changed particle type to the polymer type by sulfuric acid using SEM analysis. For FT-IR analysis, it was confirmed that S-O radical ($1200cm^{-1}$) increased in the sulfuric acid treatment than non-treated sulfuric acid. As the method used very small amount of PEDOT:PEG, its transparency could be kept, and pre-treatment process of sulfuric acid will be able to simplify the production process.

본 연구에서는 박테리아 셀룰로오스(BC)와 같은 천연고분자에 전도성 고분자 PEDOT:PEG와 graphene, 은나노와이어(AgNW)를 코팅하여 전도성을 부여하고자 하였다. 미리 PEDOT:PEG와 황산을 10~20%를 혼합하여 그 용액을 전자 스핀 코팅으로 BC 기판에 코팅하였다. 그 후, 전도성을 향상시키고자 graphene과 AgNW로 코팅하여 hall effect로 측정하였다. 그 결과, 대조군 PEDOT:PEG로 코팅한 BC 막의 전자농도($2.487{\times}10^{10}/cm^3$)에 비해 PEDOT:PEG에 황산을 10%로 혼합하여 코팅시킨 BC막($8.093{\times}10^{15}/cm^3$) 쪽이 $3.25{\times}10^5$배 높은 값을 나타내는 것으로 전도도가 대폭 향상되었음을 알 수 있었다. 또한, SEM분석으로 PEDOT:PEG가 황산처리에 의해 폴리머 형상으로 변화된 것을 확인 할 수 있었다. 분자구조의 변화를 FTIR분석결과 $1200cm^{-1}$ 파장의 S-O그룹이 황산처리 전에 비해 황산 혼합한 쪽에서 크게 상승된 것이 확인되었다. 이 방법을 이용하여 소량의 PEDOT:PEG사용으로 투명성을 확보할 수 있으며 미리 황산을 처리하는 것으로 제조공정을 단순하게 할 것으로 사료된다.

Keywords

References

  1. Chiang, C. K., Fincher, C. R., Park, Y. W., Heeger, A. J., Shirakawa, H., Louis, E. J., Gau, S. C. and MacDiarmid, A. G., "Electrical Conductivity in Doped Polyacetylene," Phys. Rev. Lett., 39, 1098(1977). https://doi.org/10.1103/PhysRevLett.39.1098
  2. Skotheim, T. A., Elsenbaumer, R. L. and Reynolds, J. R., Handbook of Conducting Polymers 2nd ed., Marcel Dekker, New York, NY (1998).
  3. Skotheim, T., Handbook of Conducting Polymers, Dekker, New York, NY(1986).
  4. AIP Series in Polymers and Complex Materials, in Physical Properties of Polymers Handbook, AIP Press, New York, NY(1996).
  5. Satas, D. and Tracton, A. A., Coatings Technology Handbook, Marcel Dekker, New York, NY(2001).
  6. Kim, J. Y., Jung, J. H., Lee, D. E. and Joo, J., "Enhancement of Electrical Conductivity of Poly(3,4-ethylenedioxythiophene)/poly (4-styrenesulfonate) by a Change of Solvents," Synth. Met., 126, 311-316(2002). https://doi.org/10.1016/S0379-6779(01)00576-8
  7. Ouyang, J., Xu, Q. F., Chu, C. W., Yang, Y., Li, G. and Shinar, J., "On the Mechanism of Conductivity Enhancement in Poly(3,4-ethylenedioxythiophene): Poly(styrene sulfonate) Film Through Solvent Treatment," Polymer 45, 8443-8450(2004). https://doi.org/10.1016/j.polymer.2004.10.001
  8. Nardes, A. M., Janssen, R. A. J. and Kemerink, M. A., "Morphological Model for the Solvent-Enhanced Conductivity of PEDOT:PSS Thin Films," Adv. Funct. Mater., 18, 865-871(2008). https://doi.org/10.1002/adfm.200700796
  9. Kim, N. R., Kee, S. Y., Lee, S. H., Lee, B. H., Kahng, Y. H., Jo, Y. R., Kim, B. J. and Lee, K. H., "Highly Conductive PEDOT:PSS Nanofibrils Induced by Solution-Processed Crystallization," Adv. Mater., 26, 2268-2272(2014). https://doi.org/10.1002/adma.201304611
  10. Yim, E. C., Kim, S. J. and Kee, C. D., "Fabrication and Characterization of Transparent Conductive Film based on Bacterial Cellulose," Korean Chem. Eng. Res., 51(6), 766-773(2013). https://doi.org/10.9713/kcer.2013.51.6.766
  11. Park, H. S., Chang, S. H., Smith, M., Gradecak, S. and Kong, J., "Interface Engineering of Graphene for Universal Applocations as Both Anode and Cathode in Organic Photovoltaics," Scientific Report. 3:1581, DOI: 10.1038(2013). https://doi.org/10.1038/srep01581
  12. Son, Y. J., Sul, O. J., Chung, D. K., Han, I. S., Choi, Y. J. and Jeong, C. S., "Isolation and Characterization of Trichoderma sp. C-4 Producing Cellulases," Kor. J. Appl. Microbiol. Biotechnol., 25, 346-353(1997).
  13. Son, C. J., Chung, S. Y., Lee, J. E. and Kim, S. J., "Isolation and Cultivation Characteristics of Acetobacter xylinum KJ1 Producing Bacterial Cellulose in Shaking and Agitated Culture," J. Appl. Microbiol. Biotechnol., 12, 722-728(2002).
  14. Alexander, W. J. and Mitchell, R. L., "Rapid measurement of Cellulose Viscosity by Nitration Methods," Anal. Chem., 21, 1497-1500(1949). https://doi.org/10.1021/ac60036a018
  15. Quan, B, Yu, S. H., Chung, D. Y., Jin, A., Park, J. H., Sung, Y. E. and Piao, Y. Z., "Single Source Precursor-based Solvothermal Synthesis of Heteroatom-doped Graphene and Its Energy Storage and Conversion Applications," Scientific Report. 4: 5639, DOI: 10.1038(2014).