DOI QR코드

DOI QR Code

Optimization of Process Variables for Insulation Coating of Conductive Particles by Response Surface Methodology

반응표면분석법을 이용한 전도성물질의 절연코팅 프로세스의 최적화

  • Sim, Chol-Ho (Department of Fine Chemistry and Advanced Materials, Sangji University)
  • 심철호 (상지대학교 정밀화학신소재학과)
  • Received : 2015.10.30
  • Accepted : 2015.12.08
  • Published : 2016.02.01

Abstract

The powder core, conventionally fabricated from iron particles coated with insulator, showed large eddy current loss under high frequency, because of small specific resistance. To overcome the eddy current loss, the increase in the specific resistance of powder cores was needed. In this study, copper oxide coating onto electrically conductive iron particles was performed using a planetary ball mill to increase the specific resistance. Coating factors were optimized by the Response surface methodology. The independent variables were the CuO mass fraction, mill revolution number, coating time, ball size, ball mass and sample mass. The response variable was the specific resistance. The optimization of six factors by the fractional factorial design indicated that CuO mass fraction, mill revolution number, and coating time were the key factors. The levels of these three factors were selected by the three-factors full factorial design and steepest ascent method. The steepest ascent method was used to approach the optimum range for maximum specific resistance. The Box-Behnken design was finally used to analyze the response surfaces of the screened factors for further optimization. The results of the Box-Behnken design showed that the CuO mass fraction and mill revolution number were the main factors affecting the efficiency of coating process. As the CuO mass fraction increased, the specific resistance increased. In contrast, the specific resistance increased with decreasing mill revolution number. The process optimization results revealed a high agreement between the experimental and the predicted data ($Adj-R^2=0.944$). The optimized CuO mass fraction, mill revolution number, and coating time were 0.4, 200 rpm, and 15 min, respectively. The measured value of the specific resistance of the coated pellet under the optimized conditions of the maximum specific resistance was $530k{\Omega}{\cdot}cm$.

전도성 물질인 철 입자(iron particles)를 절연체로 코팅하여 제작한 압분자심(powder core)은 비저항이 작기 때문에 고주파 영역에서 와전류 손실이 크다. 이 결함을 해결하기 위해서는 압분자심의 비저항을 증가시킬 필요가 있다. 이 연구에서는 압분자심의 비저항을 증가시키기 위하여 유성볼밀을 사용하여 전기전도성 철 입자에 산화제2구리를 코팅하였다. 반응표면분석법을 사용하여 코팅변수를 최적화하였다. 최적화 시 인자는 CuO 질량분율, 밀 회전 수, 코팅시간, 볼 크기, 볼 질량, 시료 질량이며, 반응변수는 비저항이었다. 6인자-일부요인배치법에 의하면 주된 인자는 CuO 질량분율, 밀 회전 수, 코팅시간이었다. 3-인자 완전요인배치법과 최대경사법을 사용하여 3개 인자의 수준을 선정하였다. 최대경사법을 사용하여 최고의 비저항을 갖는 영역에 접근하였다. 최종적으로 Box-Behnken법을 사용하여 스크린한 인자들의 반응표면을 분석하였다. Box-Behnken법 결과에 의하면 CuO 질량분율과 밀 회전 수가 코팅공정 효율에 영향을 주는 주요 인자이었다. CuO 질량분율이 증가함에 따라 비저항은 증가하였다. 그에 반해서 밀 회전 수가 감소함에 따라 비저항은 증가하였다. 코팅공정을 최적화한 모델로부터 계산한 예측값과 실험값과는 통계적으로 유의하게 일치하였다($Adj-R^2=0.944$). 비저항의 최고값을 갖는 코팅조건은 CuO 질량분율은 0.4, 밀 회전 수는 200 rpm, 코팅시간은 15분이었다. 이 조건에서 코팅한 정제의 비저항 측정값은 $530k{\Omega}{\cdot}cm$이었다.

Keywords

References

  1. Tajima, S., Hattori, T., Kondoh, M., Kishimoto, H., Sugiyama, M. and Kitto, T., "Properties of High Density Magnetic Composite (HMDC) Fabricated from Iron particles Coated with New Type Phosphate Insulator," J. Jpn. Soc. Powder Powder Metallurgy, 52(3), 164-170(2005). https://doi.org/10.2497/jjspm.52.164
  2. Chen, S. F., Chang, H. Y., Wang, S. J., Chen, S. H. and Chen, C. C., "Enhanced Electromagnetic Properties of Fe-Cr-Si Alloy Powders by Sodium Silicate Treatment," Journal of Alloys and Compounds, 637, 30-35(2015). https://doi.org/10.1016/j.jallcom.2015.02.198
  3. Sunday, K. J., Darling, K. A., Hanejko, F. G. and Anasori, B., "$Al_2O_3$ "Self-coated" Iron Powder Composites Via Mechanical Milling," Journal of Alloys and Compounds, 653, 61-68(2015). https://doi.org/10.1016/j.jallcom.2015.08.260
  4. Taghvaei, A. H., Ebrahimi, A., Ghaffari, M. and Janghorban, K., "Investigating the Magnetic Properties of Soft Magnetic Composites Based on Mechanically Alloyed Nanocrystalline Fe-5 wt% Ni Powders," J. Magn. Magn. Mater., 323, 150-156(2011).
  5. Gramatyka, P., Kolano-Burian, A., Kolano, R. and Polak, M., "Nanocrystalline Iron Based Powder Cores for High Frequency Applications," J. Achieve. Mater. Manuf. Eng., 18(2006).
  6. Zhao, Y.-W., Zhang, X. K. and Xiao, J. Q., "Submicrometer Laminated Fe/$SiO_2$ Soft Magnetic Composites - An Effective Route to Materials for High-frequency Applications," Adv. Mater., 17(2005).
  7. Taghvaei, A. H., Shokrollahi, H., Ghaffari, M. and Janghorban, K., "Influence of Particle Size and Compaction Pressure on the Magnetic Properties of Iron-Phenolic Soft Magnetic Composites," J. Phy. Chem. Solids, 71, 7-11(2010). https://doi.org/10.1016/j.jpcs.2009.08.008
  8. Hemmati, I., Hosseini, H. R. M. and Kianvash, A., "The Correlations Between Processing Parameters and Magnetic Properties of An Iron-resin Soft Magnetic Composite," J. Magn. Magn. Mater., 305,147-151(2006). https://doi.org/10.1016/j.jmmm.2005.12.004
  9. Streckova, M., Fuzer, J., Medvecky, L., Bures, R., Kollar, P., Faberova, M. and Girman, V., "Characterization of Composite Materials Based on Fe Powder (core) and Phenol-formaldehyde Resin (shell) Modified with Nanometer-sizes $SiO_2$," Bull. Mater. Sci., 37, 167-177(2014). https://doi.org/10.1007/s12034-014-0644-7
  10. Liu, W., Zhong, W., Jiang, H., Tang, N., Wu, X. and Du, Y., "Highly Stable Alumina-Coated Iron Nanocomposites Synthesized by Wet Chemistry Method," Surf. Coat. Technol., 200, 5170-5174(2006). https://doi.org/10.1016/j.surfcoat.2005.04.039
  11. Streckova, M., Medvecky. L., Fuzer, J., Kollar, P., Bures, R. and Faberova, M., "Design of Novel Soft Magnetic Composites Based on Fe/resin Modified with Silica," Mater. Lett., 101, 37-40(2013). https://doi.org/10.1016/j.matlet.2013.03.067
  12. Yaghtin, M., Taghvaei, A. H., Hashemi, B. and Jangborban, K., "Effect of Heat Treatment on Magnetic Properties of Iron-based Soft Magnetic Composites with $Al_2O_3$ Insulation Coating Produced by Sol-gel Method," Journal of Alloys and Compounds, 581, 293-297(2013). https://doi.org/10.1016/j.jallcom.2013.07.008
  13. Streckova, M., Bures, R., Faberova, M., Medvecky, L., Fuzer, J. and Kollar, P., "A Comparison of Soft Magnetic Composites Designed from Different Ferromagnetic Powders and Phenolic Resins," Chinese Journal of Chemical Engineering, 23, 736-743(2015). https://doi.org/10.1016/j.cjche.2014.12.005
  14. Fujimoto, T., Yamauchi, J., Yamanaka, S. and Kuka, Y., "Insulation Coating of Conductive Particles by Planetary Ball Milling," J. Soc. Powder Technol. Japan, 50, 398-404(2013). https://doi.org/10.4164/sptj.50.398
  15. Taghvaei, A. H., Ebrahimi, A., Ghaffari, M. and Janghorban, K., "Analysis of the Magnetic Losses in Iron-based Soft Magnetic Composites with MgO Insulation Produced by Sol-gel Method," J. Magn. Magn. Mater., 322, 3748-3754(2010). https://doi.org/10.1016/j.jmmm.2010.07.032
  16. Brunckova, H., Kabatova, M. and Dudrova, E., "The Effect of Iron Phosphate, Alumina and Silica Coatings on the Morphology of Carbonyl Iron Particles," Surf. Interface Anal., 42, 13-20(2010).
  17. Jay, F., Gauthier, V. and Dubois, S., "Iron Particles coated with Alumina: Synthesis by a Mechanofusion Process and Study of the High-Temperature Oxidation Resistance," J. Am. Ceram. Soc., 89, 3522-3528(2006). https://doi.org/10.1111/j.1551-2916.2006.01266.x
  18. Asao, K., Yoshioka, Y. and Watano, S., "Development of Compound Particles of Polyimide Particle/Carbon Nanotube by Planet Ball Mill," J. Soc. Powder Technol. Japan, 49, 521-527(2012). https://doi.org/10.4164/sptj.49.521
  19. Sim, C. H., "Application of Response Surface Methodology for the Optimization of Process in Food Technology," Food Engineering Progress, 15(2), 97-115(2011).
  20. Kim, D. S. and Park, Y. S., "Application of Central Composite Design and Response Surface Methodology to the Treatment of Dye Using Electrocoagulation/Flotation Process," J. Korean Soc. Water Qual., 26(1), 35-43(2010).
  21. Lee, S. H., Data Analysis of Engineering Statistics Using Minitab, revision, Iretec Inc., Kunpo, ROK, 647-778(2008).
  22. Park, S. H., Design of Experiments, Minyoungsa, Seoul, 453-504(2005).
  23. Geravand, E., Shariatinia, Z., Yaripour, F. and Sahebdelfar, S., "Copper-based Nanocatalysts for 2-butanol Dehydrogenation: Screening and Optimization of Preparation Parameters by Response Surface Methodology," Korean J. Chem. Eng., 32(12), 2418-2428(2015). https://doi.org/10.1007/s11814-015-0087-x
  24. Ilbay, Z., Sahin, S. and Buyukkabasakal, K., "A Novel Approach for Olive Leaf Extraction Through Ultrasound Technology: Response Surface Methodology Versus Artificial Neural Networks," Korean J. Chem. Eng., 31(9), 1661-1667(2014). https://doi.org/10.1007/s11814-014-0106-3
  25. Khamforoush, M., Asgari, T., Hatami, T. and Dabirian, F., "The Influences of Collector Diameter, Spinneret Rotational Speed, Voltage, and Polymer Concentration on the Degree of Nanofibers Alignment Generated by Electrocentrifugal Spinning Method: Modeling and Optimization by Response Surface Methodology," Korean J. Chem. Eng., 31(9), 1695-1706(2014). https://doi.org/10.1007/s11814-014-0099-y
  26. Mahdizadeh, F., Eskandarian, M., Zabarjadi, J., Ehsani, A. and Afshar, A., "Silver Recovery from Radiographic Film Processing Effluents by Hydrogen Peroxide : Modeling and Optimization Using Response Surface Methodology," Korean J. Chem. Eng., 31(1), 74-80(2014). https://doi.org/10.1007/s11814-013-0174-9
  27. Park, J. C., Ha, D. M. and Kim, M. G., "Modified Response Surface Methodology(MRSM) for Phase Equilibrium - Theoretical Background," Korean J. Chem. Eng., 13(2), 115-122(1996). https://doi.org/10.1007/BF02705897
  28. Chemical Society of Japan, Chemistry H/B, Revised 2nd ed., Maruzen Co., Ltd, Tokyo, 55-139, 1155(1975).
  29. Malvern, Sample Dispersion & Refractive Index Guide, version 3.1, Malvern Instruments Ltd., England, 2.1-2.14(1997).
  30. Box, G. E. P. and Behnken, D. W., "Some New Three Level Designs for Three Level Designs for the Study of Quantitative Variables," Technometrics, 2(4), 455-475(1960). https://doi.org/10.1080/00401706.1960.10489912
  31. Song, R. K., SAS/STAT Regression, 3rd ed., Freedom Academy, Pajoo, 141-282(2004).

Cited by

  1. 교반볼밀을 이용한 금속기반 복합재 제조공정에서 다른 분쇄매체차이에 대한 입자형상변화와 DEM 시뮬레이션 해석 vol.55, pp.4, 2016, https://doi.org/10.9713/kcer.2017.55.4.456
  2. α-Bisabolol을 함유한 PIT Nanoemulsion의 최적화 및 피부흡수연구 vol.37, pp.6, 2020, https://doi.org/10.12925/jkocs.2020.37.6.1738
  3. Development of Tolerance-Based Performance Prediction Technology and Optimization of Actuator Design Factors of a Magnet Vertical Magnetization of AVAS vol.11, pp.6, 2016, https://doi.org/10.3390/app11062505
  4. Development of tolerance-based design optimization technology for the horizontal magnetized structure of acoustic vehicle alerting system vol.235, pp.23, 2016, https://doi.org/10.1177/09544062211018486