DOI QR코드

DOI QR Code

Effects of Differential Heating by Land-Use types on flow and air temperature in an urban area

토지 피복별 차등 가열이 도시 지역의 흐름과 기온에 미치는 영향

  • Park, Soo-Jin (Department of Environmental Atmospheric Sciences, Pukyong National University) ;
  • Choi, So-Hee (Korea Electric Power Corporation Engineering and Construction Company) ;
  • Kang, Jung-Eun (Department of Environmental Atmospheric Sciences, Pukyong National University) ;
  • Kim, Dong-Ju (Department of Environmental Atmospheric Sciences, Pukyong National University) ;
  • Moon, Da-Som (Department of Environmental Atmospheric Sciences, Pukyong National University) ;
  • Choi, Wonsik (Department of Environmental Atmospheric Sciences, Pukyong National University) ;
  • Kim, Jae-Jin (Department of Environmental Atmospheric Sciences, Pukyong National University) ;
  • Lee, Young-Gon (Applied Meteorology Research Division, National Institute of Meteorological Research)
  • 박수진 (부경대학교 환경대기과학과) ;
  • 최소희 (한국전력기술) ;
  • 강정은 (부경대학교 환경대기과학과) ;
  • 김동주 (부경대학교 환경대기과학과) ;
  • 문다솜 (부경대학교 환경대기과학과) ;
  • 최원식 (부경대학교 환경대기과학과) ;
  • 김재진 (부경대학교 환경대기과학과) ;
  • 이영곤 (국립기상과학원 응용기상연구과)
  • Received : 2016.11.01
  • Accepted : 2016.11.21
  • Published : 2016.12.31

Abstract

In this study, the effects of differential heating by land-use types on flow and air temperature at an Seoul Automated Synoptic Observing Systems (ASOS) located at Songwol-dong, Jongno-gu, Seoul was analyzed. For this, a computation fluid dynamics (CFD) model was coupled to the local data assimilation and prediction system (LDAPS) for reflecting the local meteorological characteristics at the boundaries of the CFD model domain. Time variation of temperatures on solid surfaces was calculated using observation data at El-Oued, Algeria of which latitude is similar to that of the target area. Considering land-use type and shadow, surface temperatures were prescribed in the LDAPS-CFD coupled model. The LDAPS overestimated wind speeds and underestimated air temperature compared to the observations. However, a coupled LDAPS-CFD model relatively well reproduced the observed wind speeds and air temperature, considering complicated flows and surface temperatures in the urban area. In the morning when the easterly was dominant around the target area, both the LDAPS and coupled LDAPS-CFD model underestimated the observed temperatures at the Seoul ASOS. This is because the Kyunghee Palace located at the upwind region was composed of green area and its surface temperature was relatively low. However, in the afternoon when the southeasterly was dominant, the LDAPS still underestimated, on the while, the coupled LDAPS-CFD model well reproduced the observed temperatures at the Seoul ASOS by considering the building-surface heating.

본 연구에서는 기상청 현업 국지기상모델(Local Data Assimilation and Prediction System, LDAPS)과 전산유체역학(Computational Fluid Dynamics, CFD) 모델을 접합하여, 서울 종로구 송월동에 위치한 지동기상관측소(서울 ASOS) 주변 지역의 기상 환경을 분석하였다. 토지 피복별 차등 가열이 도시 지역의 대기 흐름과 기온에 미치는 영향을 분석하기 위하여, 시간 변화에 따른 토지 피복별 지표면 온도와 그림자 영역에 대한 지표면 온도 감소 효과를 고려하였다. LDAPS 모델은 상세한 건물, 지형, 지표면 가열 효과를 고려하지 못하기 때문에, 풍속을 과대모의 하고 기온을 과소 모의하였다. 건물과 지형의 마찰 효과와 태양 복사에 의한 지표면 가열을 고려할 수 있는 LDAPS-CFD 접합 모델은 서울 ASOS 지점의 관측 풍속과 유사한 풍속을 모의하였고, 관측 기온을 잘 재현하였다. 주로 동풍이 부는 오전 시간대에는 LDAPS-CFD 접합 모델 또한 기온을 과소모의 하였는데, 이는 서울 ASOS 지점의 풍상측(동쪽)에 위치한 경희궁 주변 지역에 주로 수목이 분포하고 있고, 표면 온도가 상대적으로 낮기 때문인 것으로 판단된다. 그러나, 주로 남동풍 계열의 바람이 부는 오후 시간대에는 풍상측에 위치한 건물의 표면 가열의 효과로 인해 서울 ASOS 지점의 관측 기온을 상대적으로 잘 모의하였다.

Keywords

References

  1. Arakawa, A., and V.R. Lamb, 1977. Computational design of the basic dynamical processes of the UCLA general circulation model. Methods in computational physics, 17: Academic press, 173-265.
  2. Asaeda, T., V.T. Ca, and A. Wake, 1996. Heat storage of pavement and its effect on the lower atmosphere. Atmospheric Environment, 30: 413-427. https://doi.org/10.1016/1352-2310(94)00140-5
  3. Baik, J.-.J., S.-B. Park, and J.-.J. Kim, 2009. Urban flow and dispersion simulation using a CFD model coupled to a mososcale model. Journal of applied Meteorology and Climatology, 48: 1667-1681. https://doi.org/10.1175/2009JAMC2066.1
  4. Bourbia, F., and H.B. Awbi, 2004. Building cluster and shading in urban canyon for hot dry climate, Part 1: Air and surface temperature measurements. Renewable Energy, 29: 249-262. https://doi.org/10.1016/S0960-1481(03)00170-8
  5. Charney, J.G., and N.A. Phillips, 1953. Numerical integration of the quasi-geostrophic equations for barotropic and simple baroclinic flow. Journal of Meteorology, 10: 71-99. https://doi.org/10.1175/1520-0469(1953)010<0071:NIOTQG>2.0.CO;2
  6. Cheng, X., and F. Hu, 2005. Numerical studies on flow fields around buildings in an urban street canyon and cross-road. Advances in Atmospheric Sciences, 22: 290-299. https://doi.org/10.1007/BF02918518
  7. Choi, H.-W., D.-Y. Kim, J.-J. Kim, K.-Y. Kim, and J.-H. Woo, 2012. Study on dispersion characteristics for fire scenarios in an urban area using CFD-WRF coupled model. Atmosphere, 22: 47-55. https://doi.org/10.14191/Atmos.2012.22.1.047
  8. Coirier, W.J., and S. Kim, 2006. Summary of CFDUrban results in support of the Madison square garden and urban dispersion program field tests. American meteorological Society, J5.5.
  9. David, B. 1980. The computation of equivalent potential temperature. Monthly Weather Review, 108: 1046-1053. https://doi.org/10.1175/1520-0493(1980)108<1046:TCOEPT>2.0.CO;2
  10. Hang, J., and Y. Li, 2010. Wind conditions in idealized building clusters: Macroscopic simulations using a porous turbulence model. Boundary-Layer Meteorology, 136: 129-159. https://doi.org/10.1007/s10546-010-9490-3
  11. Hanna, S.R., M.J. Brown, F.E. Camelli, S.T. Chan, W.J. Coirier, O.R. Hansen, A.H. Huber, S.R. Kim, and R.M Reynolds, 2006. Detailed simulations of atmospheric flow and dispersion in downtown Manhattan: An Application of Five Computational Fluid Dynamics Models, Bulletin of the American Meteorological Society, 87: 1713-1726. https://doi.org/10.1175/BAMS-87-12-1713
  12. Hanna, S.R., O.R. Hansen, M. Ichard, and D. Strimaitis, 2009. CFD model simulation of dispersion from chlorine railcar releases in industrial and urban areas. Atmospheric Environment, 43: 262-270. https://doi.org/10.1016/j.atmosenv.2008.09.081
  13. Kim, J.-J. and J.-J. Baik, 2005. Physical experiments to investigate the effects of street bottom heating and inflow turbulence on urban street-canyon flow. Advances in atmospheric Sciences, 22: 230-237. https://doi.org/10.1007/BF02918512
  14. Kim, J.-J. and J.-J. Baik, 2010. Effects of street-bottom and building-roof heating of flow in treedimensional street canyon. Advances in atmospheric Sciences, 27: 513-527. https://doi.org/10.1007/s00376-009-9095-2
  15. Kim, J.-J. and D.-Y. Kim, 2009. Effects of building density on flow in urban areas. Advances in atmospheric Sciences, 26: 45-56. https://doi.org/10.1007/s00376-009-0045-9
  16. Kim, J.-J., E. Pardyjak, D.-Y. Kim, K.-S. Han, and B.-H. Kwon, 2014. Effects of Building-Roof Cooling on Flow and Air Temperature in Urban Street Canyons, Asia-Pacific Journal of Atmospheric Sciences, 50: 365-375. https://doi.org/10.1007/s13143-014-0023-8
  17. Kim, H.O., and J.M. Yeom, 2012. Effect of the urban land cover types on the surface temperature: Case study of Ilsan new city. Korean Journal of Remote Sensing, 28(2): 203-214 (In Korean with English abstract). https://doi.org/10.7780/kjrs.2012.28.2.203
  18. Kwon, A.-R. and J.-J. Kim, 2014. Improvement of building-construction algorithm for using GIS data and analysis of flow and dispersion around buildings, Korean Journal of Remote Sensing, 30(6): 731-742 (In Korean with English abstract). https://doi.org/10.7780/kjrs.2014.30.6.4
  19. Kwon, A.-R. and J.-J. Kim, 2014. Study on detailed air flows in urban areas using GIS data in a vector format and a CFD model, Korean Journal of Remote Sensing, 30(6): 755-767 (In Korean with English abstract). https://doi.org/10.7780/kjrs.2014.30.6.6
  20. Kwon, A.-R. and J.-J. Kim, 2015. Analysis on the observation environment of surface wind using GIS data, Korean Journal of Remote Sensing, 31(2): 65-75 (In Korean with English abstract). https://doi.org/10.7780/kjrs.2015.31.2.2
  21. Lee, E.Y., S.K. Moon, and S.R. Shim, 1996. A study on the effect of air temperature and ground temperature mitigation from several arrangements of urban green. The Korean Institute of Landscape Architecture, 61: 65-78.
  22. Lee, J.-H., J.-W. Choi, J.-J. Kim, and Y.-C. Suh, 2009. The effects of an urban renewal plan on detailed air flows in an urban area. Journal of the Korean Association of Geographic Information Studies, 12(2): 69-81 (In Korean with English abstract).
  23. Lee, Y.-S., and J.-J. Kim, 2011. Effects of and apartment complex on flow and dispersion in an urban area. Atmosphere, 21: 95-108.
  24. Liu, C.H., and M.C. Barth, 2002. Large-eddy simulation of flow and scalar transport in a modeled street canyon. Journal of applied Meteorology, 41: 660-673. https://doi.org/10.1175/1520-0450(2002)041<0660:LESOFA>2.0.CO;2
  25. Liu, H.Z., B. Liang, F.R. Zhu, B.Y. Zhang, and J.G. Sang, 2003. A laboratory model for the flow in urban street canyons induced by bottom heating. Advances in atmospheric Sciences, 20: 554-564. https://doi.org/10.1007/BF02915498
  26. Liu, Y., J. Chen, W. Ge, J. Wang, and W. Wang, 2011. Acceleration of CFD simulation of gas-solid flow by coupling macro-/meso-scale EMMS model. Powder Technology, 212: 289-295. https://doi.org/10.1016/j.powtec.2011.04.035
  27. Tewari, M., H. Kusaka, F. Chen, W.J. Coirier, S. Kim, A.A. Wyszogrodzki, and T.T. Warner, 2010. Impact of coupling a microscale computational fluid dynamics model with a mesoscale model on urban scale contaminant transport and dispersion. Atmospheric Research, 96: 656-664. https://doi.org/10.1016/j.atmosres.2010.01.006
  28. Van Hooff, T. and B. Blocken, 2010. Coupled urban wind flow and indoor natural ventilation modelling on a high-resolution grid: A case study for the Amsterdam ArenA stadium, Environmental Modelling & Software, 25: 51-65. https://doi.org/10.1016/j.envsoft.2009.07.008
  29. Wong, N.H., Y. Chen, C.L. Ong, and A. Sia, 2003. Investigation of thermal benefits of rooftop garden in the tropical environment. Building and Environment, 38: 261-270. https://doi.org/10.1016/S0360-1323(02)00066-5
  30. Xie, S., Y. Zhang, L. Qi, and X. Tang, 2003. Spatial distribution of traffic-related pollutant concentrations in street canyons, Atmospheric Environment, 37: 3213-3224. https://doi.org/10.1016/S1352-2310(03)00321-2
  31. Yakhot, V., S.A. Orszag, S. Thangam, T.B. Gatski, and C.G. Speziale, 1992. Development of turbulence models for shear flows by a double expansion technique, Physics of Fluids, 4: 1510-1520. https://doi.org/10.1063/1.858424
  32. Yang, H.-J. and J.-J. Kim, 2015. Evaluation of Observation Environment for Weather Stations Located in Metropolitan Areas, Korean Journal of Remote Sensing, 31(2): 193-203 (In Korean with English abstract). https://doi.org/10.7780/kjrs.2015.31.2.13
  33. Yoshie, R., A. Mochida, Y. Tominaga, H. Kataoka, K. Harimoto, T. Nozu, and T. shirasawa, 2007. Cooperative project for CFD prediction of pedestrian wind environment in the architectural institute of Japan. Journal of Wind Engineering and Industrial Aerodynamics, 95: 1551-1578. https://doi.org/10.1016/j.jweia.2007.02.023
  34. Patankar, S.V., 1980. Numerical Heat Transfer and Fluid Flow, McGraw-Hill, New York, pp.197.
  35. Versteeg, H.K. and W. Malalasekera, 1995. An Introduction to Computational Fluid Dynamics: The Finite Volume Method, Longman, Malaysia, pp.257.
  36. Zheng, M.H., Y.R. Guo, X.Q. Ai, T. Qin, Q. Wang, and J.M. Xu, 2010. Coupling GIS with CFD modeling to simulate urban pollutant dispersion. Mechanic Automation and Control Engineering, 1785-1788.

Cited by

  1. WUDAPT Protocol을 활용한 Local Climate Zone 분류 - 서울특별시를 사례로 - vol.45, pp.4, 2016, https://doi.org/10.9715/kila.2017.45.4.131
  2. 전산 유체 역학 모델을 이용한 도시지역 흐름 및 열 환경 수치모의 검증 vol.38, pp.7, 2016, https://doi.org/10.5467/jkess.2017.38.7.522
  3. WRF-Chem 모델과 결합된 CFD 모델을 활용한 도시 지역의 일산화탄소 확산 연구 vol.36, pp.5, 2016, https://doi.org/10.7780/kjrs.2020.36.5.1.3
  4. 다중규모 모델을 이용한 도시 지역 흐름과 초미세먼지(PM2.5) 분포 특성 연구: Part I - 상세 흐름 분석 vol.36, pp.6, 2020, https://doi.org/10.7780/kjrs.2020.36.6.3.2