DOI QR코드

DOI QR Code

Emotion Prediction of Paragraph using Big Data Analysis

빅데이터 분석을 이용한 문단 내의 감정 예측

  • Kim, Jin-su (College of Liberal Arts, Anyang University)
  • Received : 2016.09.30
  • Accepted : 2016.11.20
  • Published : 2016.11.28

Abstract

Creation and Sharing of information which is structured data as well as various unstructured data. makes progress actively through the spread of mobile. Recently, Big Data extracts the semantic information from SNS and data mining is one of the big data technique. Especially, the general emotion analysis that expresses the collective intelligence of the masses is utilized using large and a variety of materials. In this paper, we propose the emotion prediction system architecture which extracts the significant keywords from social network paragraphs using n-gram and Korean morphological analyzer, and predicts the emotion using SVM and these extracted emotion features. The proposed system showed 82.25% more improved recall rate in average than previous systems and it will help extract the semantic keyword using morphological analysis.

모바일의 확산과 더불어 정형화된 자료뿐만 아니라 다양한 형태의 비정형화된 자료로부터 정보가 생성되고 정보 전달 및 공유가 활발히 이루어지고 있다. 최근에는 다양한 SNS 매체들로부터 생산 및 배포되는 많은 자료들 중에서 유의미한 정보를 추출하는 기술로 빅데이터 기술을 많이 사용하며, 빅데이터 분석 기법 중 하나인 데이터 마이닝 기법을 사용한다. 특히, SNS로부터 수집된 방대하고 다양한 자료들을 이용하여 대중의 집단지성에 표출된 일반적인 감정을 분석하여 다양한 분야에 활용한다. 본 논문에서는 SNS를 통해 작성된 짧은 문단 내 함축된 키워드와 키워드들 간의 연관성을 이용하여 문단에 나타난 감정을 예측하고 사용자별 감정에 따른 적절한 답변이나 예측된 감정과 유사한 상품이나 영화 등 다양한 추천시스템에 사용될 수 있도록 형태소 분석과 변형된 n-gram방법을 혼합하여 효율적인 감정 예측 시스템을 제안한다. 제안된 시스템은 평균 82.25%의 재현율을 보여 기존의 시스템에 비해 더욱 향상된 성능을 보여 주었고, 형태소분석을 통해 의미 있는 키워드 추출에 도움이 될 것으로 기대한다.

Keywords

References

  1. Sung-hyun Yun, Keun-ho Lee, Heui-seok Lim, Dae-ryong Kim, Jung-hoon Kim, "The Method of Digital Copyright Authentication for Contents of Collective Intelligence", Journal of the Korea Convergence Society, Vol. 6, No. 6, pp. 185-193, 2015. https://doi.org/10.15207/JKCS.2015.6.6.185
  2. Jung-Hoon Kim, Jun-Young Go, Keun-Ho Lee, "A Scheme of Social Engineering Attacks and Countermeasures Using Big Data based Conversion Voice Phishing", Journal of the Korea Convergence Society, Vol. 6, No. 1, pp. 85-91, 2015. https://doi.org/10.15207/JKCS.2015.6.1.085
  3. Dong-Yup Choi, Jin-Kyu Park, Tae-Jung Kim, "An Emotion Extraction Method from SMS Text for the Emotion Expression Robot", Journal of Korea Intellectual Patent Society, Vol.18, No. 44, pp.5-8, 2016.
  4. Young-Seok Yoo, Bang-Yong, Sohn, "Music Listening Behavior analysis of Twitter User and A Comparative Study of Domestic Music Ranking", Journal of Digital Convergence, Vol.14, No.5, pp.309-316, 2016. https://doi.org/10.14400/JDC.2016.14.5.309
  5. Eun-Jin Jung, Joo-Chang Kim, Joo-Chang Kim, Kyungyong Chung, "Social Network based Sensibility Design Recommendation using {User - Associative Design} Matrix", Journal of Digital Convergence, Vol.14, No.8, pp.313-318, 2016. https://doi.org/10.14400/JDC.2016.14.8.313
  6. Michael W Morris, Dacher Keltner. "How Emotions Work: the Social Functions of Emotional Expression in Negotiatios", Research in Organizational Behavior, 22, pp.1-50, 2000. https://doi.org/10.1016/S0191-3085(00)22002-9
  7. Robert E. Thayer, "The Biopsychology of Mood and Arousal", Oxford University Press, 1989.
  8. HeeSam Shin, The Society Of Korean Semantics, Korean Semantics 15, pp. 207-225, 2004.
  9. http://konlpy.org/ko/v0.4.4/
  10. Bernhard E Boser, Isabelle M Guyon, and Vladimir N Vapnik, "A Training Algorithm for Optimal Margin Classifiers", Proc. The Fifth Annual Workshop on Computational Learning Theory, pp.144-152, 1992..
  11. John Gantz, David Reinsel, "Extracting Value from Chaos", IDC IVIEW June, p.6, 2011.
  12. O'Reilly Radar Team, Planning for Big Data, O'Reilly, 2012.
  13. http://en.wikipedia.org/wiki/N-gram
  14. Jin-Su Kim, "Emotion Prediction of Document using Paragraph Analysis", Journal of Digital Convergence, Vol. 12, No. 12, pp.249-255, 2014. https://doi.org/10.14400/JDC.2014.12.12.249
  15. http://kin.naver.com/openkr/list.nhn
  16. Do,H. H., Melnik, S. & Rahm, E. 2002. Comparison of Schema Matching Evaluations. In Revised Papers from the NODe 2002 Web and Database-Related Workshops on Web, Web-Services, and Database Systems, Akmal B. Chaudhri, Mario Jeckle, Erhard Rahm, and Rainer Unland (Eds.). Springer-Verlag, London, UK, 221-237.

Cited by

  1. Associative Feature Information Extraction Using Text Mining from Health Big Data pp.1572-834X, 2018, https://doi.org/10.1007/s11277-018-5722-5